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Automated sleep stage classification in sleep apnoea using convolutional 
neural networks 

G. Naveen Sundar a, D. Narmadha a, A. Amir Anton Jone b, K. Martin Sagayam b, Hien Dang c,d,*, 
Marc Pomplun d 

a Department of Computer Science and Engineering, Karunya Institute of Technology and Sciences, Coimbatore, India 
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A B S T R A C T   

A sleep disorder is a condition that adversely impacts one’s ability to sleep well on a regular schedule. It also 
occurs as a consequence of numerous neurological sicknesses. These types of disorders can be investigated using 
laboratory-based polysomnography (PSG) signals. The detection of neurological disorders is exact and efficient 
thanks to the automated monitoring of sleep relegation stages. This automation method publicly presents a 
flexible deep learning model and machine learning approach utilizing raw electroencephalogram (EEG) signals. 
The deep learning model is a Deep Convolutional Neural Network (CNN) that analyses invariant time capacities 
and frequency actualities and collects assessment adaptations. It also captures the inviolate and long brief length 
setting conditions between the epochs and the degree of sleep stage relegation. 

This method uses an innovative function to calculate data loss and misclassified errors found while training the 
network for the sleep stage, considering the restrictions found in the publicly available sleep datasets. It is used in 
conjunction with machine learning techniques to forecast the best approach for the process. Its effectiveness is 
determined by using two open-source, public databases available from PhysioNet: two recordings with 5402 
epoch counts. The technique used in this approach achieves an accuracy of 90.70%, precision of 90.50%, recall of 
92.70%, and F-measure of 90.60%. The proposed method is more significant than existing models like AlexNet, 
ResNet, VGGNet, and LeNet. The comparative study of the models could be adopted for clinical use and modified 
based on the requirements.   

1. Introduction 

Sleep is defined by neurobiological activity, exhalation, heart rate, 
pulse rate, and other metabolic responses. Its impact on human physical 
and cognitive exercises makes it a significant factor in human wellbeing. 
As a result of the ramifications of gruelling and contrivance life, sleep 
disruption is becoming more prevalent in modern societies. S. Biswal 
et al., 2017 suggested andragogy to know about the combination of 
neurological and psychological disorders that can impair standard sleep 
patterns [1]. One category of effects are Sleep Disorders, which have 
become a widespread phenomenon in the majority of the population. 
According to a study conducted by Wakefield Research (U. R. Acharya 

et al., 2018 [2]; R. B. Berry et al., 2012 [3]; A. Rechtschaffen 1968 [4]), 
more than half (51%) of the adult ecumenical community lament that 
they get less sleep than they desire on an average night. Many discrete 
sleep disorders have been discovered, according to the sine qua nons of 
the International Classification of Sleep Disorders. S. Miran et al., 2018 [5] 
and Miller, M.A 2015 [6] suggested that sleep disorders, in addition to 
reducing insalubrious, cogitation and reminiscence. Authors such as J. 
Chen et al., 2017 [7], J. Chen et al., 2018 [8], and B. Koley and D. Dey 
2012 [9] analyzed the significant side effects of these disorders, 
including the incremental risk of cardiovascular diseases, neuro
cognitive and extortionate. L. Fraiwan et al., 2012 [10], A. P. Mog
haddam and S. Mousavi 2012 [11], and Y.-L. Hsu et al., 2013 [12] 

* Corresponding author. Department of Computer Science, University of Massachusetts Boston, MA, USA., Faculty of Computer Science and Engineering, Thuy Loi 
University, Hanoi, Viet Nam. 

E-mail addresses: naveensundar@karunya.edu (G.N. Sundar), narmadha@karunya.edu (D. Narmadha), amiranton8787@gmail.com (A.A. Anton Jone), 
martinsagayam.k@gmail.com (K.M. Sagayam), hiendt@tlu.edu.vn (H. Dang), marc.pomplun@umb.edu (M. Pomplun).  

Contents lists available at ScienceDirect 

Informatics in Medicine Unlocked 

journal homepage: www.elsevier.com/locate/imu 

https://doi.org/10.1016/j.imu.2021.100724 
Received 5 July 2021; Received in revised form 1 September 2021; Accepted 2 September 2021   

mailto:naveensundar@karunya.edu
mailto:narmadha@karunya.edu
mailto:amiranton8787@gmail.com
mailto:martinsagayam.k@gmail.com
mailto:hiendt@tlu.edu.vn
mailto:marc.pomplun@umb.edu
www.sciencedirect.com/science/journal/23529148
https://www.elsevier.com/locate/imu
https://doi.org/10.1016/j.imu.2021.100724
https://doi.org/10.1016/j.imu.2021.100724
https://doi.org/10.1016/j.imu.2021.100724
http://crossmark.crossref.org/dialog/?doi=10.1016/j.imu.2021.100724&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


Informatics in Medicine Unlocked 26 (2021) 100724

2

recommended accurate tenacity and treatment influenced by several 
vital records, and regarded precise sleep scoring as a critical process 
component. They proposed a visual assessment method, which is the 
most relevant approach but requires visual interpretation of various 
signal data. However, qualitative scoring has some drawbacks, such as 
the experts’ experience, which results in different scoring results by 
foreign experts. Furthermore, in whole-night EEG labelling, visual vet
ting is a time-consuming process, making automated scoring more 
efficient. 

Sutskever et al., 2014 [13] and S. S. Mousavi et al., 2016 [14], 
writing about the computerized treatment of sleep disorders, argued 
that polysomnography (PSG) can be considered the foremost approach 
for implementing electrophysiological signals to analyse body functions 
during sleep [15,16]. PSG is a multivariate rubric spanning recordings of 
signals such as electroencephalograms (EEG), electrocardiograms 
(ECG), electrooculograms (EOG), and electromyograms (EMG). 
Conventionally, EEG is primarily utilized to screen the encephalon ac
tivities to diagnose sleep and other prevalent disorders. S. S. Mousavi 
et al., 2017 [17] and S. S. Mousavi et al., 2017 [18] suggested that EEG 
signals are divided into illimitably predefined fixed length segments, 
referred to as epochs and labelled by the standards of sleep scoring 
proposed by the American Academy of Sleep Medicine (AASM) in 
conjunction with the standards of Rechtschaffen and Kales; each EEG 
recording spans around 8 h on average. 

Numerous studies have focused on developing automated sleep-stage 
scoring algorithms. These are commonly known as feature extraction 
approaches, and are primarily divided into two categories. S. S. Mousavi 
et al., 2014; A. Shamsoshoara et al., 2019 [19]; and A. L. Goldberger 
et al., 2000 [20] proposed hand-engineered feature-predicated strate
gies that require precursory cognizance of EEG analysis to extract the 
most germane features. These procedures extract specific aspects, such 
as time, frequency, and the time-frequency domain of single 
channel-EEG waveforms. Some canonical Machine Learning (ML) al
gorithms, such as Random Forests (RF), Support Vector Machines 
(SVM), and Neural Networks (NNs), incorporate the fundamental 
construct for sleep scoring based on the extracted features. 

Although these methods have demonstrated reasonable perfor
mance, they have several limitations, including a requirement for prior 
knowledge of sleep analysis and the inability to generalize more massive 
datasets from multiple patients with different sleep patterns. Second, 
automated feature extraction–based methods are similar to deep 
learning algorithms, in that the machine automatically extracts all 
relevant features. O. Yildirim et al., 2019 [21]; A. Supratak et al., 2017 
[22]; O. Tsinalis et al., 2016 [23]; and Dang T. T. Hien et al., 2015 [24] 
have suggested, over the last few years, deep neural networks protrac
tible from reinforcement learning, and natural language processing to 
computer vision. N. Michielli et al., 2019 [25] and M. Johnson et al., 
2017 [26] addressed one of the critical reasons for the increased use in 
these domains of deep learning–based methods: the availability of 
massive data dimensions grasp the underlying concave pattern of the 
data sets. Because of the existence of these extensive sleep EEG re
cordings, deep learning algorithms can also be used for sleep stage 
classification and other purposes. Despite the remarkable increase in the 
utilization of deep learning models with bromidic machine learning 
methods for sleep disorder prediction, they still suffer from the imbal
ance of class, quandary impending in the datasets. K. M. Sagayam et al., 
2021 [27] suggested the use of deep learning techniques and a pervasive 
machine learning technique, allowing the model to reach an expert-level 
capability for sleep stage classification. 

This study proposes a novel approach to deep learning for the 
automation of sleep scoring by using a single-channel EEG and the 
sequential nature of this problem. As a result, in addition to applying a 
sequence-to-sequence model corresponding to a deep learning model, 
the following building blocks are required: 

a) A Bidirectional Recurrent Neural Network (BiRNN) to capture tran
sient data from clusters while considering the reference point and 
future input data.  

b) Conditional Arbitrary Fields (CRF), statistical methods to facilitate 
representation and explicate the essential relevant components of the 
input arrangement while planning.  

c) A nascent inability to minimize the consequences of lopsidedness 
perusal quandary by treating the failure of each misclassified test 
equally, regardless of whether it belongs to the majority or minority 
class. 

This research article is organized as follows: Section II describes the 
methodology. Section III discusses the dataset and experimental results, 
as well as comparing performance to advanced calculations. Section IV 
concludes the research, along with outlining future work. 

2. Methodology 

The following section describes the proposed conceptual framework 
to automatically score each stage of sleep from a given EEG signal in 
detail. 

2.1. Pre-processing 

The input to the previously mentioned construct can be obtained by 
grouping 30s EEG epochs. Two simple steps extract EEG epochs from an 
EEG signal:  

a) Fragment the continuous new single-channel EEG into a set of 30s 
epochs and conduct operations such as transferring and classifying 
into epochs, based on the comment file.  

b) Standardize EEG epochs of the 30s so that each has a zero mean and a 
change of unity. 

Note that the specific steps of pre-processing for the sleep score 
extraction are minor and do not include any frame of filtering or 
distortion deliberation strategies. 

2.2. PROPOSED architecture 

According to the corollaries of neural machine translation, this 
sequence-to-sequence model is trotted out to be very noteworthy, 
approximately similar to human-level performance. This sequence-to- 
sequence network ordinarily consists of two components, namely a 
type of Recurrent Neural Network (the encoder) and Convolutional 
Neural Network (the decoder), to initiate the automated sleep scoring 
relegation suggested by Shibin David et al., 2020 [28]. 

The CNN model has the same characteristics recommended by recent 
studies. The proposed deep learning architecture with a sequence-to- 
sequence approach is shown in Fig. 1. It is divided into two segments: 
tiny channels for extricating temporal data and a much larger one for 
releasing frequency data. This method utilizes variable-size filters, 
which originate from the signal processing community and are used to 
swap between time-space and frequency domain features. Within the 
classification assignment, it highlights the fact benefits from both fre
quency- and time-domain features. Each CNN portion comprises four 
sequential uni-dimensional layers of convolution. Every single layer of 
the convolution is passed to a nonlinear ReLU layer. A max-pooling layer 
and a block of dropout are tagged, along with the first mantle layer. 
Furthermore, the last convolutional layer is followed by a single dropout 
block. Clustered 30s epochs of EEG are fed into the CNN feature 
extraction at the respective timestamps of training or testing the model. 
The outputs of the CNN components are concatenated within the 
cessation and followed by a dropout block to organize the encoder for 
encoding the input arrangement. The sequence-to-sequence model is 
streamlined to predict the representations of encoder-decoder 
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abstraction. The layout of the CNN model with feature extraction is 
shown in Fig. 2. 

While the encoder garbles the input sequence, the decoder evaluates 
the category of each 30s, single-channel EEG. A Long Short-Term 
Memory (LSTM) retrieval begins with the encoder by capturing long 
short-term setting conditions and the involute curve between the targets 
and the inputs. It captures the state of nonlinearity exhibited within the 
whole-time arrangement whereas prognostication the target. The time- 
series input features are fed to the LSTMs, and the firms the ability to 
calculate LSTM are then considered as the encoder representation and 
fed to the attention network. 

2.3. Bidirectional recurrent neural network 

A diagrammatic representation of Bidirectional LSTM (BiLSTM) ar
chitecture appears in Fig. 3. The model uses a bidirectional recurrent 
neural network rather than the standard LSTM, which is unidirectional 
and thus limited to a behavioural input state. To overcome this obstacle, 
the BiRNN was proposed, which can prepare information in both 

forward and reverse bearings. As a result, the current state has simul
taneous access to both future and past information. The input sequence 
is supplied into the forward network in mundane time order = 1 T, and 
for the backward network, in inverse time order = T... 1. The sum of the 
outputs of the two networks is then weighted and computed as the 
output of the BiRNN. 

2.4. ATTENTION DECODER 

The encoder-decoder model for recurrent neural networks is 
designed to anticipate grouping-to-grouping problems. 

2.5. Encoder 

The encoder can venture through the input time steps and encode the 
whole arrangement into a fine-tuned length vector called a setting 
vector. 

Fig. 1. Deep learning architecture with sequence-to-sequence approach.  
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2.6. Decoder 

The decoder can venture through the yield crossroads steps, scanning 
from the setting vector. A problem with the design is that execution is 
poor on long input or yield arrangements due to the fine-tuned size in
side the representation utilized by the encoder. Consideration is an 
expansion to the design that addresses this restraint. It liberates the 
encoder-decoder from the fine-tuned length of the internal representa
tion. It operates by providing a relatively rich setting from the encoder 
LSTM to the decoder LSTM. Later, a cognition component is included, in 
which the decoder LSTM can understand where to focus within the 
richer encoding. These forecast time steps within the yield arrangement 
(Shibin David et al., 2020 [28]; G. Rajesh et al., 2020 [29]). 

2.7. CONDITIONAL RANDOM FIELDS (CRFs) 

These are probabilistic systems for denominating and sectioning 
organized information, such as arrangements, trees, and cross-sections. 
The underlying idea is to define a conditional probability distribution 
over label groupings given a categorical optical insight arrangement 
rather than a joint dispersion over both name and visual acumen 
groupings. 

The fundamental advantage of Conditional Random Fields over 
hidden Markov models is their conditional character, which allows 
hidden Markov models to relax the independence postulates required for 
tractable inference. CRFs, on the other hand, eliminate the label parti
alness problem that affects Maximum Entropy Markov Models (MEMMs) 
and other conditional Markov models based on directed graphical 
models (Mhathesh T.S.R. et al., 2021 [30]; Sathish Nirala et al., 2019 
[31]). 

2.8. Algorithm 

Step 1:Pass raw EEG signal through convolutional layer (32 feature 
maps, ReLU activation function) 

y ​ = ​ max ​ (0, ​ x) (1)   

Step 2: Output of the previous layer passed through LSTM network 
(Recurrent 
Step 3: Input signal is pre-processed to extract the optimal features 
from the signal data using the discrete wavelet transform method 
Step 3: The extracted features are analyzed for the statistical test. 
Step 4: The optimal features are selected using PCA. 
Step 4: Output of the previous layer passed through a 2D max- 
pooling layer of dimensions 2x2. 
Step 5: For the proposed model, the optimal features are passed 
through a convolutional layer with 32 markers and a sigmoid acti
vation function. 
Step 6: Output of the previous layer passed through a fully connected 
dense layer with 186 perceptrons (Rectifier activation). 
Step 7: The model is build utilizing Adam optimizer by applying a 
learning rate of 0.05, categorical cross-entropy loss, and rectifier 
activation. 

The cross-entropy loss function for binary classification can be given 
as equation (2),  

CEL(Cross-Entropy Loss) = – (zlog(a) + (1 – z) log (1 – a))                (2) 

where z is the binary indicator (0 or 1), and a is the predicted 
probability. 

Fig. 2. The CNN model showing feature extraction.  

Fig. 3. General structure of BiLSTM.  
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3. Experimental results 

3.1. Dataset and data preparation 

The dataset used in this study is the second adaptation of the Phys
ioNet Sleep-EDF dataset, which was created in 2018 and contains 197 
polysomnograms (PSG) to evaluate the performance of the proposed 
model for sleep stage assignment. The Sleep-EDF dataset contains two 
types of data: (1) those that evaluate the effects of age on sleep in 
healthy persons, and (2) those that investigate the effects of temazepam 
(sleeping pills) on sleep. The dataset comprises whole-night poly
somnogram (PSG) sleep recordings at a 100 Hz testing rate. Each record 
includes EOG, EEG, chin EMG, and occasion markers. An inadequate 
document conventionally contains oronasal breath and rectal body 
temperature. The hypnograms were physically labelled by professionals 
according to Rechtschaffen and Kales standards, which were assigned to 
a different class at each level. The American Academy of Sleep Medicine 
(AASM) norms for these classes are W, REM, N1, N2, and N3. In the 
evaluations, single EEG channels from the group of both versions were 
considered in the integration. The total number of stages in the dataset 
used for evaluation is 65,971-W (wake), 21,522- N1, 96,132-N2, 13,039 
N3–N4 (where N1, N2, N3, and N4 record eye movement time), and 
25,835-REM (Rapid Eye Movement). 

3.2. Experimental design 

Despite the non-uniform distribution of sleep stages in the Sleep-EDF 
database, the numbers of the W and N2 phases are far higher than those 
of the other stages. The performance of Machine Learning algorithms 
degrades when a dataset has a class imbalance problem; to solve this, a 
loss function, in conjunction with a synthetic recollection over-sampling 
strategy, generates the values between existing minority samples by 
considering artificial data points. This demonstration was evaluated 
using k-fold cross validation, with the k value set to 20 for this database 
and the database divided into k folds. For each unique fold, one fold is 
taken as a testing set and the remaining folds serve as a training set. 
Then, the training set is used to train the model, the testing set is used to 
evaluate the model, and all evaluation results are combined. The term 
“20-fold” refers to the number of groups that the given dataset can be 
split into. This helps evaluate the performance of the algorithm. The 
dataset is divided into 20 folds. Each fold is taken as a test set, the 
remaining folds serve as the test set, and the proposed model are eval
uated using the test set. Table .1 shows the performance achieved by the 
training and testing dataset for a single EEG signal. 

The nexus was trained with a maximum of 400 epochs. An optimizer 
named RMSProp was developed to operate with the LMFE haplessness, 
with smaller than expected clusters of size 20 and a cognition rate of α =
0.0001. In addition, along with the CRF algorithm, an adverbial L2 
regularisation component was applied to the haplessness work to alle
viate overfitting. 

Google Tensorflow deep learning library and Python programming 
language were utilized to execute the proposed approach. 

3.3. Evaluation metrics 

The measures used to assess the performance of the proposed model 
are accuracy, precision, recall, and F-score. Accuracy is one measure 
used to determine the stages of sleep apnoea disease. A higher accuracy 
leads to improved prediction of the stages of apnoea. 

The classification accuracy of the sleep stages of apnoea is validated 
using accuracy. The prediction in the steps of sleep apnoea should be 
predicted positively. The prognosis of an actual negative patient as 
positive and of positive patients as negative will affect the outcome of 
the prediction model. Precision shows the correctness achieved in pos
itive prediction (out of all positive classes, how often have correct 
classes been predicted – i.e. how many are positive?). High precision 
indicates an example labelled as positive is indeed positive (there is only 
a small number of false positives). F-score is a good alternative for 
balancing precision and recall. It helps to compute recall and precision 
in a single equation to distinguish between models with low recall and 
high precision or vice versa.  

Accuracy = (true(+ve) +true(-ve)) / ((true(+ve)+true(-ve)+false(+ve)+false 
(-ve))                                                                                             (3)  

Precision(P) = true(+ve)/ ((true(+ve)+false_(+ve))                              (4) 

Recall(R)=
true(+ve)

true(+ve) + ​ false(− ve)
(5)  

F − score = 2 x
R × P
R + P

(6)  

3.4. Result and discussion 

True Positive (TP) values indicate the number of stages accurately 
scored, which are used to identify the most components in each confu
sion network. Externally and visually, the tables (the perplexity 
matrices’ details) show that TP values are higher than other values 
within the same columns. These tables appear in the forecast execution 
(i.e., the exactness, review, specificity, and F1 score) of the demon
stration for each progression. Among all stages, the model’s perfor
mance is better for the REM (Rapid Eye Movement), W1, N2, and N3 
stages than the N1 stage. The number of N1 stages in the dataset is lower 
than the number of other stages. The constructed model is made trans
parent by comparing the CNN-BiLSTM-CRF (CBC) model and Random 
Forest (RF) model, which uses the Welch algorithm along with Spectral 
Density Mapping for feature extraction, it is the most widely used 
approach for Sleep Stage Relegation. 

The performance of the two classifiers was assessed using 20-fold 
cross-validation, which measured the following execution measures: 
exactness, accuracy, F1-measure, and recall. Whereas precision is an 
assessment degree that can be concretely calculated to appear by 
massive execution among the two classes, the precision, F1-score and 
recall are measured per class. It can be seen that CBC outperformed the 
RF comprehensive performance tests, achieving 90% accuracy as 
compared to 82% for AlexNet. In general, it can be assumed that the 
execution of a classifier essentially predicts the lion’s quota class, which 
in our case will be 50% precision, as the two classes are similarly 

Table 1 
Performance achieved by training and testing with single EEG channel of Sleep EDF database.  

Predicted Pre-class Performance (%)  

W1 N1 N2 N3 REM Pre Rec Spe F1 

W1 7258 484 87 35 314 90.15 90.45 96.88 90.55 
N1 580 1589 525 21 526 55.15 55.11 95.85 48.68 
N2 423 769 14,581 1235 1108 92.58 84.21 94.12 84.94 
N3 54 15 812 4985 7 80.98 82.57 96.54 88.27 
REM 253 352 551 43 6985 82.10 88.77 95.94 84.89  
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distributed. Hence, both CBC and AlexNet altogether defeat this pattern. 
The tremendous advantage of CBC over AlexNet is that it doesn’t require 
highlight designing to build and acquire valuable highlights. Instead, it 
only takes the first 960 features as input and can naturally select the 
most instructive ones. AlexNet highlights, on the other hand, required 
the use of wavelet adjustment, followed by highlight extraction and 
removal. An accuracy of 90% could be an auspicious result in practice, if 
it could be used as a single marginal signal – the nasal wind stream. In 
the future, designers intend to use other types of movements, such as the 
thoracic, abdominal, and chest streams. Table 2 displays the minor 
standard deviations of the findings over the 20 cross-validation runs for 
both CBC and AlexNet, as well as all execution steps for the two. There 
are a few visible differences between CBC and AlexNet: CBC has higher 
precision for the eccentric course than the traditional methods, while 
AlexNet tends to be the inverse. Furthermore, CBC has better judgement 
for mundane than for anomalous improvement, and the inverse is true 
for AlexNet. The cost of misidentifying everyday events as rare ones and 
vice versa may be considered in a cost-sensitive evaluation. 

Table 2 shows the performance comparison of the proposed model 
with existing CNN models. Note that the proposed approach produces an 
accuracy gain of about 8.7% over AlexNet, 14.1% over ResNet, 15.7% 
over VGGNet, and 17.5% over LeNet. In terms of precision, the proposed 
model produces an improvement of 8.39% over AlexNet, 10.3% over 
ResNet, 10.9% over VGGNet, and 10.3% over LeNet. 

In terms of recall, the proposed approach produces an improvement 
of 10.7% over AlexNet, 11.1% over ResNet, 16.3% over VGGNet, and 
14.5% over LeNet. For the F1-score, the proposed model produces an 
improvement of 8.6% over AlexNet, 11.3% over ResNet, 12.6% over 
VGGNet, and 12.6% over LeNet. Figs. 5 and 6 illustrate the proposed 
model’s average accuracy and loss for the training and validated data
sets over 50 epochs. The accuracy measures for various CNN models are 
compared in Fig. 4. As shown in Fig. 4, the proposed method out
performs AlexNet by 10.7%, Resnet by 14.1%, VGGNet by 15%, and 
Lenet by 17.5%. 

4. Scope for future work and conclusion 

4.1. FUTURE WORK 

Although the primary goal of programmed sleep stage classification 
strategies is to detect abnormal EEG signals in patients, none of the 
proposed plans managed to persuade the understanding group. In this 
way, creating personalized EEG-based highlights to detect EEG 
arrhythmia is critical. These signal-processing strategies tend to be 
effective for analysing artificial and quasi-rhythmic signals. However, 
they are insufficient for a chaotic-shaped signal, such as EEGs from 
patients with sleep disorders. Note that the pre-processing and extrac
tion components are more important than the classification part. The 
main comparative rest stages are N1, N2, and REM, which seem not to be 
well-segmented by the conventional communication-based signal pro
cessing highlights. This does not imply that the REM material can move 
about during the other stages of sleep. 

There is a degree of similarity between REM and all other rest stages, 
which causes the REM classification precision to decrease. In any case, 
the similarity of N2, REM, and N1, as compared to others, is significant. 
This combinatorial highlight captures the rigorousness, recurrence 

groups, and abundant varieties of an EEG epoch, which can be signi
ficant and amend sleep stage performance. Some other highlights are 
optimizing the training epochs, tackling unbalanced datasets, N1 stage 
shows drastic results comparing to different stages, decreasing the 
average F1 score, preventing over- and under-sampling, increasing 
model complexity, combining LSTM and GRU layers, and examining 
multi-channel input with an additional CRF layer. With sleep stage 
classification, deep learning is the best approach for training on massive 
datasets from organizations like MASS and SHHR, and for the use of 

Table 2 
Performance measures obtained in each model.  

MODEL Accuracy(%) Precision(%) Recall(%) F1-Score(%) 

CNN-BiLSTM-CRF 90.70 90.50 92.70 90.60 
AlexNet 82.00 82.11 82.00 82.00 
ResNet 76.6 80.2 81.6 79.3 
VGG Net 75 79.6 76.4 78 
LeNet 73.2 80.2 78.2 79  

Fig. 4. Performance of various CNN models for each class (20-fold 
cross-validation). 

Fig. 5. Model accuracy of the proposed model.  

Fig. 6. Model loss of the proposed model.  
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handcrafted expert-defined features across multiple platforms. The 
BiLSTM-CNN model can be trained and tested on a single patient’s data, 
allowing for customized sleep stage scoring. 

5. CONCLUSION 

The proposed strategy makes use of deep convolutional neural 
network and encoder-decoder architecture, along with bidirectional 
perpetual neural systems and considerations operating as its building 
blocks. The proposed early loss calculation, combined with Conditional 
Random Fields approaches, successfully reduces the impact of the class- 
imbalance problem and improved execution, especially on stage N1, 
which is more difficult to score than other sleep stages. By yielding su
perior performance for the sleep stage scoring task, the proposed model 
effectively overcomes the existing methods. 

For the most part, there would be an imbalanced knowledge problem 
when developing automated frameworks (mundane class has more in
formation than infected class). The generated interface can be connected 
to biomedical applications, such as arrhythmia detection using ECG 
signals, epilepsy detection using EEG signals, and stance cogitates using 
EMG signals. The dataset is also found to be highly dimensional, 
necessitating nonlinear decision boundaries. Among Machine Learning 
approaches, Random Forest and Boosting perform well. The use of PCA/ 
feature cull to reduce dimensionality speeds up computational valves. 
Since it encodes raw time-invariant as well as transitional features, this 
problem verbal expression is well-suited for Deep Learning with its best 
model CNN-BiLSTM. 
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