
Molloy University Molloy University

DigitalCommons@Molloy DigitalCommons@Molloy

Faculty Works: MCS (1984-2023) Math and Computer Studies

2-20-1986

SIGHT - A Tool for Building Multi-Media Structured-Document SIGHT - A Tool for Building Multi-Media Structured-Document

Interactive Editing and Formatting Applications Interactive Editing and Formatting Applications

Robert F. Gordon Ph.D.
Molloy College, rfgordon@molloy.edu

George B. Leeman Jr

Christian L. Cesar

Mark A. Martin

Follow this and additional works at: https://digitalcommons.molloy.edu/mathcomp_fac

 Part of the Graphics and Human Computer Interfaces Commons, Other Computer Sciences

Commons, and the Partial Differential Equations Commons

DigitalCommons@Molloy Feedback

Recommended Citation Recommended Citation
Gordon, Robert F. Ph.D.; Leeman, George B. Jr; Cesar, Christian L.; and Martin, Mark A., "SIGHT - A Tool for
Building Multi-Media Structured-Document Interactive Editing and Formatting Applications" (1986).
Faculty Works: MCS (1984-2023). 17.
https://digitalcommons.molloy.edu/mathcomp_fac/17

This Research Report is brought to you for free and open access by the Math and Computer Studies at
DigitalCommons@Molloy. It has been accepted for inclusion in Faculty Works: MCS (1984-2023) by an authorized
administrator of DigitalCommons@Molloy. For permissions, please contact the author(s) at the email addresses
listed above. If there are no email addresses listed or for more information, please contact tochtera@molloy.edu.

https://digitalcommons.molloy.edu/
https://digitalcommons.molloy.edu/mathcomp_fac
https://digitalcommons.molloy.edu/mcs
https://digitalcommons.molloy.edu/mathcomp_fac?utm_source=digitalcommons.molloy.edu%2Fmathcomp_fac%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/146?utm_source=digitalcommons.molloy.edu%2Fmathcomp_fac%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/152?utm_source=digitalcommons.molloy.edu%2Fmathcomp_fac%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/152?utm_source=digitalcommons.molloy.edu%2Fmathcomp_fac%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/120?utm_source=digitalcommons.molloy.edu%2Fmathcomp_fac%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
https://molloy.libwizard.com/f/dcfeedback
https://digitalcommons.molloy.edu/mathcomp_fac/17?utm_source=digitalcommons.molloy.edu%2Fmathcomp_fac%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:tochtera@molloy.edu

'•‘
(•

J

RC 11720 (#52631) 2/20/86
Computer Science 54 pages

Research Report
? SIGHT - A Tool for Building Multi-Media Structured-Document

Interactive Editing and Formatting Applications
F

Christian L Cesar
Robert F Gordon
George B Leeman
Mark A Martin

IBM Thomas J.Watson Research Center
Yorktown Heights, New York 10588

Research Division
San Jose • Yorktown • Zurich

Coplea may be requested ftöiä:
IBM Thomas J, Watson Research Center
Distribution Services F*>11 Stomyeown
Post Office Box 218
Yorktown Heights» New York I0S98

RC 11720 (#52631) 2/20/86
Computer Science 54 pages

SIGHT - A Tool for Building Multi-Media Structured-Document
Interactive Editing and Formatting Applications

Christian L Cesar
Robert F Gordon
George B Leeman
Mark A Martin

IBM Thomas J.Watson Research Center
Yorktown Heights, New York 10588

Abstract:

SIGHT is a tool for building applications that edit and format multi-media structured
documents. The media supported include text, line graphics, handwriting, images and audio.
These information media are maintained in a single integrated hierarchical database.

The document architecture models documents as trees in which nodes can be shared, i.e.,
as directed acyclic graphs. For each document there is a logical (or abstract) represention tree
and one or more physical (or layout) representation trees. A physical representation is the
result of applying the formatter to a logical representation. Both trees are separate but share
document content data. The physical representation is displayable and printable, but all ed
iting effectively occurs in the logical representation.

Any number of document types can be supported. A document type is defined by the node
types it can contain, by how these node types can be hierarchically organized, by what each
node type can contain and by the format specifications used in formatting the document.

SIGHT provides applications a language to define new document types, a Core Editor,
various specialized editors and a formatter. The Core Editor is further subdivided into a ge
neric Tree Editor and a generic Node Editor. Both are not limited by document types but are
sensitive to them. The Core Editor is the primary editing system. The specialized editors are
called upon for media-specific editing and processing.

The most primitive level of SIGHT is an object management system, called PHOVIA,
that supports network databases.

CONTENTS

1.0 Introduction .. 1

2.0 Ektcument Architecture .. 5
2.1 Documents as tree structures .. 5
2.2 Node sharing ..7
2.3 Document tree semantics ...8

2.3.1 Attribute inheritance 9
2.3.2 Conceptual unraveling of shared nodes ... 11

2.4 Document types... 12
2.4.1 Describing the tree ...13

2.4.1.1 Unconditional tree descriptions ... 13
2.4.1.2 Conditional tree descriptions ..14

2.4.2 Describing the nodes .. 14
2.4.2.1 Unconditional node type descriptions ... 14
2.4.2.2 Conditional node type descriptions ... 15

2.5 The logical and physical documents ..16
2.5.1 Thè logical representation description ... 16
2.5.2 The physical representation description ... 18
2.5.3 Formatting specifications .. 18
2.5.4 Logical and physical document representations.. 19
2.5.5 Multiple physical representations from one logical representation22

2.5.5.1 Activating multiple document types concurrently.. 23
2.5.5.2 Physical representations viewed as formatted results of database queries .. 25

2.6 An extended document environment... 26

3.0 Document Editing, Formatting and Presentation 29
3.1 Document editing ...29

3.1.1 The Core Editor 29
3.1.1.1 The Tree Editor ...29
3.1.1.2 The Node Editor ... 29

3.1.2 The Specialists ...31
3.1.3 The editing environment..32

3.2 Document formatting 34
3.2.1 The Formatter ^.. 34
3.2.2 The formatting environment ... 36

3.3 Document presentation ...39

4.0 Document Tree Management ... 41
4.1 Nodes as element lists .. 41

4.1.1 How nodes are put together ... 43
4.1.2 Element type identifier aliases ... 44
4.1.3 Element type identifier table ..46

4.2 How trees arc put together .. 47
4.3 Node element management..48

iv

5.0 Concíusicip

References

V

List of Illustrations

Figure 1. Base document model .. 6
Figure 2. Node sharing ...^
Figure 3. Balanced and unbalanced sharing ... 8
Figure 4. Attribute inheritance .. 9
Figure 5. Attribute migration .. 10
Figure 6. Attribute inheritance for shared nodes... 11
Figure 7. Conceptual unraveling of node sharing ...12
Figure 8. Unconditional node type description ... 15
Figure 9. Conditional node type description ... 15
Figure 10. Edit/format cycle .. 12
Figure 11. External and internal formatting specifications.. 19
Figure 12. Formatting attribute inheritance for a shared node ..20
Figure 13. A conceptual viev/ of raw text data sharing between LR and PR21
Figure 14. Content sharing between logical and physical representations22
Figure 15. Multiple physical representations from one logical representation 23
Figure 16. Multiple document types active at the same time ..24
Figure 17. Sharing PR descriptions and formatting specifications 26
Figure 18. An extended document environment .. 27
Figure 19. Tree Editor and tree description interaction ..30
Figure 20. Tree-structured document editing organization ..32
Figure 21. Document needing three pass formatting.. 37
Figure 22. The formatting environment...38
Figure 23. The presentation environment ...40
Figure 24. A node as an element list ... 41
Figure 25. Parent and Child elements ... 42
Figure 26. Children ordering ..43
Figure 27. Children ordering under node sharing .. 43
Figure 28. Element organization convention ...44
Figure 29. Concatenation of Datum elements ...45
Figure 30. Implicit form of node type definition .. 46
Figure 31. Explicit form of iiode type definition .. 47
Figure 32. The use of Parent and Child elements in building trees..................................... 48

VI

1

1.0 Introduction

Office document preparation software has seen a qualitative improvement in the last decade
or so. We have moved from batch formatters (e.g. Unix's NROFF/TROFF [Os76]) to inte
grated editor/formatters (e.g. Etude [Ha81]) and we are now on the road towards multi-
media integration (e.g. TextFax [Ho82]). Concurrently we are seeing an ever growing
concern with human factors accompanied by a concerted push towards greater interactivity
through faster processors -- starting with the seminal work with advanced workstations at
Xerox PARC [Th82] -- and better document rendition at the terminal through higher resol
ution displays ~ as evidenced by the numerous composition workstations that have become
available in the last few years (e.g. ViewTech and Texet, both reported in [Se84]). The reader
is referred to Meyrowitz et al. [Me82] and Furuta et al. [Fu82] for a comprehensive survey
of editing and formatting systems.

Although interactive systems are becoming more and more prevalent, batch formatters are
still being improved and heavily used (e.g. IBM's Document Composition Facility; see [Ib84]
for general information on DCF and further references). However, after formatters such as
SCRIBE [Re80] showed that separation of the hard-to-write formatting specifications from
the document contents greatly simplifies the creation of typeset documents, generic tags have
become common place and are on their way to standardization. One of the nice consequences
of generic tags is that they make the intrinsically hierarchical nature of documents more ap
parent despite the fact that tags and contents remain mixed within the flat space of a sequen
tial text file and only the formatter ~ and sometimes the user ~ is capable of deciphering this
hierarchy.

The next evolutionary step in separating format information from contents is the sepa
ration of tags from contents. Etude achieves it by making the intrinsic hierarchy of a docu
ment physically explicit. The document is no longer a continuous chain of characters — some
contents, some format information ~ but a chain of content characters partitioned by a sepa
rate tree which contains the tags and associated format information. With Etude the docu
ment hierarchy no longer materializes only at formatting time but exists already at editing
time. The editor cannot be simply character or line oriented; it must also understand tree
structures.

Modeling documents as tree structures proves to have many advantages. In particular it
makes integration of multi-mode and multi-media editing easier [Ho82]. The International
Organization for Standardization (ISO) put its imprimatur on this kind of model when it was
adopted for ISO's proposed Office Document Architecture (ODA) standard [Sm83].

In defining ODA, ISO made a bold move by adopting another important feature of Etude:
keeping a separate hierarchical representation for the output of the formatter. Formatters
will produce an "output" representation from the source "input" representation, but tradi
tional batch formatters produce a representation that is meant only for previewing or printing
and that has little structure besides what the previewing or typesetting equipment needs;
moreover the output representation is independent of the input representation. Etude followed
a different path. It borrowed the notion of boxes as found in TrX [Kn79] and built an output

2

representation in the form of a tree whose nodes correspond to ihe boxes that malte the page
layout of the document. This more abstract and geometrical output representation lends itself
to easier changes and helps achieve some degree of device independence.

Though Etude separates input and output representations, they are related to each qtfier
principally to achieve Etude's foremost goal of integrating editing and formatting in lines
Lilar to the work done at Xerox. The hallmark of this intégration is letting the user work
directly on the output representation of the document while the document is kept permaneiUly

^matted ¡1. a coLination of the notions of What-You-See-Is-What-You-Ge Í WYSIWYG) and output editing (two notions that are often confused). The æparation of the
Ltput and input representations is not a necessity for achieving this integration; however the
two representations should be related if performance enhancement techniques such as incre
mentalformatting are to be used. Other editors, such as POLITE [Pr81], have achieved ed-
iting and formatting integration by combining the input and output representaüon one
single representation, but at the cost of an inflexible data structure which makes support for

multiple document types difficult.

Support for multiple document types is one of the reasons that underlies Etude's decision
to separate the input from the output representation. In traditional batch formatters there is
no clear notion of a docuntenl type. Indeed, contents and format
and the latter must appear with every single document even when it is of the same type as
a previous one. Document types begin to materialize when format and other infomation
coLion to various documents that look the same are extraçted out of these d^uments mto a
common database and brought into action when a document of that type is to be creat^. This
is what SCRIBE does with formatting specifications and is certainly one of the
forces behind the notion of generic tap. A SCRIBE document type is made of the formatting
attributes that apply to specific tags in a document.

Etude takes the concept of document type a step further by also including the internal
structure of the input representation as part of the document type definition. This is necessary
if the editor is to maintain the well-formedness of the input representation tree sti^c ure
Given a document type, the shape of the tree and the nodes out of which the tree is built is an
integral and important part of this document type definition.

The work we are about to describe is part of the evolutionary trend we have just sketched
Our aim is to build the next generation of editing and formatting systems. We are convmced
that one of the critical dimensions of this next generation will be integration. In our view in
tegration is achieved for two components if the two components become one in the eyes of the
end user. So for example, it is not enough to allow graphics to be merged with text as many

• 1 cvctpm<! do True integration requires that graphics and text be created pid ma-
conaimnlly’in Ihe same ediling environment^, on the same page of the displaye

document. This is integration in the strongest sense of the word.

j- • „¡c.i-ii modes - text line graphics, handwriting and images - and audio
arer;™et m^ia - “ ~

ÄarraÄSltTes* spreadsheets and hnsiness graphies.

3

Our aim is an edil/formatting environment where these information media and their special
ized uses can be created, edited, related and formatted concurrently in a unified manner.
Some have called this "mixed mode editing" when applied to visual modes, "composite edit
ing" and, more boldly, "universal editing".

Our document architecture, software architecture and various other design aspects are
considerably influenced by the aforementioned software systems. We do differ however in one
major way. Our purpose is to design and implement a core system and a set of tools which can
then be used for building a finished system. One motivation behind this comes from the desire
to perform user-interface experimentation. Human factors as regards office system software
is a growing science, and we would like to benefit from the growing body of knowledge about
what constitutes a good user-interface and contribute to this body of knowledge by making
possible user-interface experimentation. We hope to achieve this by making our core system
and our tools as complete as possible but user-interface independent.

In short, our work does not define what an editor/formatter application will be like for the
end user, because we do not define what the user-interface will be. However, to gain insight
into the requirements for our core system and tools, our approach has been to work simul
taneously on the design of a family of WYSIWYG editor/formatters to be built on top of our
system. This has provided us with feedback to help specify the functionality of our system.
What we are interested in are the tools that arc needed for building interactive, integrated,
multi-media applications of which an editor/formatter is one of many, albeit the most impor
tant one for the office environment that we envisage. As said, these application-building tools
are user-interface independent; they are meant for application writers. They present an
interface that makes writing new applications and improving these with time relatively easy.
With such tools we expect the application writer to concentrate most of his efforts on design
ing proper user-interfaces. We have grouped these tools and the core system out of which
most, if not all, of our office applications will be built in the future under a single name,
SIGHT — an acronym for Sound, Image, (Line) Graphics, Handwriting and Text.

The principal components of SIGHT are (1) a document architecture — which is very
similar to ODA - that supports lattice-structured documents and fairly modular document
type definitions; (2) a software architecture — which borrows much from the one used by
Etude - comprised of (a) an editing sub-system capable of editing trees and their contents
based on the document type definition active at the time; (b) a formatting sub-system that (i)
uses the editing sub-system and the same document type definition for building a tree-
structured representation of the formatted document and (ii) is capable of formatting incre
mentally; (c) a presentation sub-system to help the application writer connect the contents of
document trees with presentation devices (typically displays, printers, and speakers for output
and keyboards, locators and microphones for input); and (d) an open-ended "specialty" sub
system to allow SIGHT to interface with media-specific programs (e.g., handwriting and
voice recognition); and (3) a hierarchical object-oriented database, called PHOVIA, within
which all document trees and their contents are created and manipulated and which takes care
of memory and file management.

This report is structured according to those three major components. Chapter 2 e.xposes
our document architecture. Chapter 3 gives a brief description of the internal organization

4

of the core system of SIGHT. Chapter 4 explains how document trees are

PHOVIA database.

stored withir* the

5

2.0 Document Architecture

In this section we explain SIGHT'S document architecture, how document types are defined
and how the document architecture can be made to pervade the operating system. The docu
ment architecture was created with office documents in mind but its generality does not con
strain it to the office environment.

Interest in standards for office documents has been growing. These standards are ex
pected to deal with document preparation and transmission. Of particular interest to us are
standards that define the internal structure of documents. The International Organization for
StandardiMtion (ISO) in cooperation with various other standards bodies such as the
Consultative Committee of international Telegraph and Telephone (CCITT) and the
European Computer Manufacturers' Association (ECMA) have been involved in settin" up
a standard for "text structure" [Sm83]. "Text", in ISO's terminology, includes the various
forms of digitally encoded information that a document can contain, in particular the various
modes of visual media (character text, line art and images) and audio media (digitized sound).

Part of the proposed text structure standard is the Office Document Architecture, which
we shall abbreviate to ODA. ODA defines an abstract document model whose central feature
is the breaking down of a document into two structures: the logical and the layout. The logical
structure reflects the organization of a document from the view of the author and is inde
pendent of the final rendition the document will take when displayed, printed or heard. The
layout structure reflects the rendition of this document after formatting for some, possibly
generic, device. The relationship between the logical and layout structures is given by layout
directives that indicate how the first structure is to be mapped into the second. A recent doc
ument architecture proposal [Ho84] recommends that these two structures be related hierar
chies of objects with neither structure being dominant.

ODA has other features which we shall allude to in the course of this report. ODA is an
important reference point because the document architecture that we use is identical in se
veral respects to ODA. On the other hand, our architecture stresses flexibility to an extent
that appears to surpass ODA. Because of this and other aspects of our implementation, we
have not made an effort to align our terminology too closely to the one used in ODA. We will
present the terminological connections in the appropriate sections of this report.

2.1 Documents as tree structures
The inherently hierarchical nature of documents in general suggests that they be represented
as tree structures. This choice is reinforced by our opinion, which is shared by others
[Ho82,Ki84], that convenient editing of mixed-mode and multi-media documents requires
that they have a well-structured internal representation. This same choice was also made by
Ilson [1180] but in the context of supporting an integrated editor/formattcr, which is also one
of our crucial requirements.

In a tree structured document representation, the root of the tree represents the entire
document and deeper levels represent progressively smaller document parts. Though data of

6

different modes and media are kept isolated from each other deep within the tree, the tree
structure allows these different modes and media to be put into close relationship (e.g., an- ,
choring a figure to a word in a paragraph).

This notion of structuring documents as trees is commonly exemplified by listing the parts
of a book: it contains chapters, which contain sections, which contain sub-sections, which
contain paragraphs, which contain sentences, which contain words, which contain letters. This
prototypical deep hierarchy yields trees with eight levels, each level containing only ope type
of node. Not all documents have such a clean hierarchy, however. A document model should
handle any arbitrary complex trees. Levels in the tree may contain many different types of
nodes (e.g., mixing paragraphs, figures and voice annotation), certain types of nodes may be
found at different levels in the tree (e.g., a paragraph in a chapter section versus a paragraph
within a figure) apd branches in the tree may have different deptji (e.g., chapters may have
variable sub-section nesting). In short, document trees do not have to be balanced or homo

geneous.

In our model, the data structures that underlie documents are trees. Trees are composed
of nodes interconnected by two relationships: parent-child and sibling-sibling. Both are con
ceptually implemented as forward-backward pointer pairs so that travelling through a docu
ment can be done in any direction with equal ease. The parent-child relation is the basic tree
structuring mechanism. A node may have any number of child nodes. Normally a node has
only one parent node. (Node sharing will be discussed later.) The child nodes of a parent node
are organized in the form of an ordered list, whether the order matters or not. Sibling-siblmg
relations interconnect these child nodes (Figure 1).

I parent-child <---- ► sibling-sibling

Figure 1. Base document model: The two relationships used for building document
trees are the parent-child and sibling-sibling relationships. The first links
nodes "hierarchically* and the latter connects nodes of a single parent
"horizontally". This example tree shows that there are no connections
between nodes of different subtrees except through ancestors that are
siblings. In later figures we will not draw the sibling-sibling relationships. [

»

7

Nodes are the only objects that exist physically. A node contains all the outgoing pointers
that serve to define the tree structure -- to w'it, pointers to parent, children and siblings -- and
ail other data. The latter include attributes and raw data. Raw data can be seen as the con
tents of a document and the attributes as all the properties that define how the document
should be handled in terms of editing, formatting and presentation. These properties can take
many different forms and serve many different purposes.

The most important attribute of a node is its type. All nodes must have a type. In principle
there is no limitation to the number of nodes that can have the same type. How nodes of dif
ferent types can relate and where they can appear in a document tree is dependent on the type
of the document. How document types are defined is discussed later.

2.2 Node sharing
One of the important features of the model is that a node in a document tree can be shared,
i.e., a node can have more than one parent. When one or more nodes arc shared, the document
is no longer a tree but a directed acyclic graph (Figure 2). Nonetheless we will use the term
"tree" for both (pure) trees and those that contain shared nodes.

Figure 2. Node sharing: A document tree can contain shared nodes. In this sense the
document tree is in effect a directed acyclic graph. In this example, a
sentence is shared by two paragraphs.

There are no restrictions on the parents of a shared node. All may be at the same absolute
level in the tree, in which case we talk of balanced sharing, or they may be found at different
absolute levels, in which case the sharing is unbalanced. Absolute level is a measure of the
distance of a node to the root (Figure 3 on page 8).

8

baIanced
sharing

unbalanced
sharing

etS-tS
e

Eeh
f B 1 F b 1

.Figure 3. Balanced and unbalanced sharing: Sharing is balanced when the distance
from the tree root to any shared node is independent of the path taken; it is
unbalanced otherwise. Shared node B is two nodes away from the root
whether the path is R-G-B or R-H-B. Shared node U is one or two nodes

, away from the root depending on the path taken, R-U or R-G-U.

Common uses for sharing are easy to find. Bibliographic references are natural candi
dates. The point where the reference is made is captured in a node that becorties the parent
of the referent. The latter node is the one that carries all the bibliographic information. Many
references to the sartie referent imply a shared referent.

Graphical objects are potential heavy users of sharing. Repeated copies of complex objects
will become costly if they have to be replicated. If, in addition, this repetition is nested deeply,
the cost could become prohibitive. Sharing is practically a necessity here.

Spreadsheets and their connection to data in other document elements (e.g., a number
within some paragraph in the main text) can be implemented much more easily with node
sharing. Sharing allows spreadsheet capabilities to spread beyond the confines of the
spreadsheet proper. The dichotomy between the document as text and the spreadsheet as a
self-contained separate computational environment disappears.

This notion of shared objects was proposed by Kimura and Shaw [Ki84]. Their document
model allows, in addition to sharing, for links between nodes to be established independent of

the hierarchical structure.

2.3 Document tree semantics
In this section we present two important aspects of document trees: attribute inheritance and
the interpretation of node sharing. Attribute inheritance is an old notion. SCRIBE [Re80]
implemented it in the form of environment nesting. Pertinent recent work is Andra IGu84],
a documentation preparation system that also uses attribute Inheritance to radiate, formatting
information from shallow nodes (closest, to the root) to deeper nodes in the tree. We use the
same technique, except that the existence of shared nodes requires a slightly improved form

9

of attribute inheritance. Moreover, we can apply the technique not only to formatting infor
mation but to any information that is defined as inheritable.

2.3.1 Attribute inheritance
The critical difference between data and attributes in a node is that attributes are inheritable
while data are not. An attribute value in a node applies to all its descendants but the value
may be overriden at any level (Figure 4).

Figure 4. Attribute inheritance: Children inherit from their parents the attribute
values that these parents carry or inherit from their own parents. If a node
contains an attribute value, it overrides the value, if any, inherited from
above. This local overriding value then becomes the new value of the
attribute for all descendents of the node in question. In the example tree, a
single attribute, C[olor], is shown for nodes that assign a value to it (nodes
containing an assignment) and nodes that inherit its value from ancestors
(nodes containing the inherited value in parentheses).

Attribute inheritance is desirable in view of the potentially high fan-out of nodes in a doc
ument tree (e.g., chapters often contain a large number of paragraphs). It allows attributes
that are common to a certain level in a tree and have the same value to be coaslesced and mi
grated to higher levels. This avoids replicating the same attribute in all the nodes in a deeper
level when a single copy of this attribute in a parent or higher ancestor suffices. It is enough
then to remember that this attribute stored high in the tree is in effect applying to nodes at
deeper levels (Figure 5 on page 10). In the figure, the Par_Width attribute of the Paragraph
node type (a) is first migrated to the Chapter level (b) and then to the root (c). This reduces
the amount of storage needed for attributes and their values and does not prevent the attribute
from being overwritten at any deeper level (d).

While the inheritance mechanism is unambiguous for pure trees, it is often not so when the
tree contains shared nodes. For such trees, static inheritance may be ambiguous for the
shared nodes and all their descendants. Disambiguation is achieved through dynamic rather
than static inheritance. By dynamic inheritance we mean that when a shared node is reached
and attribute inheritance is calculated, the path taken to reach the node from above is

10

s

11

normally known and it is along this path that attributes are inherited. If the same shared node
is reached by a different path, a possibly completely different set of attribute values may apply
to it (Figure 6 on page 11).

Figure 6. Attribute inheritance for shared nodes: Attribute inheritance is dynamic.
This must be so because of node sharing. The attributes and their values
inherited by a shared node may depend on the path taken to reach it. The
shared node in the center of the example tree will have the C attribute equal
to red if reached from the left (a) and grn if reached from the right (b).

In the rare cases where thé path to a shared node can not be determined, inheritance starts
from the highest level (i.e. closest to the root) for which the path is known. If the highest level
is the shared node itself, it does not inherit anything. This is also true of nodes that are not
shared because dynamic inheritance is the only form of inheritance supported. But situations
where the path is not known are so rare and always under user control that we can usually
think of having static inheritance with dynamic disambiguation at shared nodes.

2.3.2 Conceptual unraveling of shared nodes
The existence of sharing does not change the fundamental interpretation of a document as a
pure tree. This interpretation is obtained by conceptually replicating every shared node until
there are no more shared nodes (Figure 7 on page 12). The presence of sharing does not in
troduce new meanings into documents. The reasons for having sharing are, first, it saves space

I
12:

since only one copy of a shared node need be stored; second, the editing of a shared node or
any of its descendants assures that the changes are reflected immediately everywhere the
shared node is used; third, it often saves time as a consequence of the previous reason; and
fourth, the implementation of sharing as an extension of the parent-child mechanism rather
than an ad-hoc ancillary mechanism, such as links, leads to a more uniform specification of
the editing operations that can be performed on the document tree.

(a)

(b)

Figure 7. Conceptual unraveling of node sharing: The interpretatioji of a tree with
shared nodes is that of a tree with all shared nodes unraveled. Example (a)
unravels a balanced shared tree and example (b) unravels an unbalanced
shared tree.

2.4 Document types
It'is convenient to have the notion of a document type. In our model, a document type is a
collection of descriptions and specifications. There is a logical description and a physical de
scription (both descriptions and the formatting specifications that go with it will be defined
more specifically in a later section). The logical description describes the document's logical
structure that should exist during content creation and editing. The physical description de
scribes the document's physical structure that should exist after formatting. Fundamentally,
both descriptions describe tree structures. In this sense they are equivalent mechanisms with
two different purposes. In this section we concentrate on this common mechanism. Any de-

13

scription, logical or physical, contains (1) a description of how a tree is to be hierarchically
organized and what are its component node types, and (2) a description of what each node
type can contain in terms of attributes and data. We call these the tree description and the
node type descriptions, respectively. Though the following explanations apply equally to log
ical and physical descriptions, the examples are all meant for the former.

2.4.1 Describing the tree

2.4.1.1 Unconditional tree descriptions
Describing a document tree is defining what node types it can contain and how these node
types can relate to each other. An extended BNF-like language is used for this purpose. Each
statement of a tree description refers to a node type. The statement describes for this node
type what other node types it can have as children. In other words, a statement's primary task
is to describe valid parent-child relationships. For example.

Document — Chapter+
Chapter -* Section*

states that a Document node can be the parent of Chapter nodes and a Chapter node can be
the parent of Section nodes. The language uses regular expression type notation for counting
purposes. Thus, the "+" above indicates that the Document node may have one or more
Chapter nodes as children and the that a Chapter node must have zero or more Section
nodes. and " are shortcuts for a more comprehensive notation for specifying any arbi
trary continuous range of values.

A statement's secondary task is to describe any relevant order between the children of a
node. Thus

Section — Paragraph (Paragraph \ Figure)*

states that a Section node must have at least one child (the oldest) and it must be of type
Paragraph. Following this Paragraph node, there can be any combination of Paragraph and
Figure nodes. The "I" is the usual OR of regular expressions.

Statements can be recursive. Thus

Section — Section*

states that a Section node may have Section nodes as children. So defined, this nesting can be
carried ad infinitum.

A node type may be described by more than one statement, as is the case for the two pre
vious statements describing the Section node type. In such cases each statement is taken to
mean an alternate description.

. As an example, the tree description for the simple document type used in Figure 2 on page
7 could be

14

Document - Section*
Section -> Paragraph*
Paragraph — Sentence*
Sentencé — Word*

The extent to which one has to detail tree descriptions depends on what primitive node types
are directly supported. As a minimum, a Character node type should be sü^pofted for text.
The example assumes that a Word node type is directly supported. In practice, Paragraph
node types should also be supported.

A tree description does not say anything about node sharing. Node sharing is always
available. It is up to the application to decide when to share and when not to share.

2.4.1.2 Conditional tree descriptions

A tree description can contain conditional statements. A conditional statement is of the form:

I condition I statement

If the condition is true, the statement is part of the tree description. If it is false, the statement
is ignored.

The condition can be based on the structure of the tree (c.g., how many nodes of a certain
type exist in the tree), the kinds of attributes and data that a node contains (e.g., how many
authors does the document root contain) and the values of these attributes and data.

When a node type tree is described by more than one statement, be they unconditional or
conditionally true, each statement is taken to mean an alternate description.

2A.2 Describing the nodes

2.4.2.1 Unconditional node type descriptions
The tree description merely uses node type names. What each node type can contain is de
scribed by a node type description. There is one Stich desetiption for each existing node type.
A node type description defines what attributes and data can be contained in an instance of
this node type. Such attributes and data can be defined as required or as optional. Required
attributes and data are always assigned space when a new instance of the node type is created.
Optional attributes and data are dynamically allocated as needed. Default values for attri
butes and data can be defined, in which case they are used for initializing a new instance of
the node type (Figure 8 on page 15).

15

Node_Type: Document
Author*
Date'
Size*
Owner* = "Worldwide Office Systems"

Figure 8. Unconditional node type description: A node type description contains a
list of attributes and data an instance of this node type can contain. In this
example the node type Document contains four items. The superscripts
indicate the number of occurrences allowed for each item. Thus, the Author
item can appear any number of times while Date, Size and Owner must
appear once each. Owner has a default value assigned to it.

2.4.2.2 Conditional node type descriptions

Similarly to tree descriptions, node type descriptions can be conditional. Each attribute or
datum declared to be part of a node, either required or optional, can be prefixed by a condi
tion. If the condition is true, the attribute or datum is taken to be part of the node type de
scription. If it is false, the attribute or datum is ignored (Figure 9).

Node_Type Document
Author*
Date*
Size*

|Date < 3/1/851 Owner* = "National Business Computers"
[Date > 3/1/851 Owner* = "Worldwide Office Systems"

Figure 9. Conditional node type description: Items listed in a node type description
can be conditionally included by prefixing them with a condition. In this
example. Owner may have one of two values depending on the value of the
Data item.

The condition follows the same pattern as the condition for tree description statements. In
addition, conditions that relate to attribute and datum values can describe internal or external
dependencies. An internal dependency refers to other attributes and data of the node to which
the node type description is being applied. An external dependency refers to attributes and
data of a different node.

The application of a conditional node type description is dynamic in the sense that for one
instance of a node type the condition may not be satisfied while for another instance it may.
It is typical then for a node type description that has a conditional item to have more than one
condition regulating that item. In such case the conditions are normally mutually exclusive
and cover the universe of possibilities so that one of the conditions will define the item.

16

2.5 The logical and physical documents
While SIGHT is aimed principally for WYSIWYG-type applications where tlie end-user sees
and interacts with a single uniform document object, behind the curtains the application pro
grammer must deal with two forms of document representation. The first form is the logical
or abstract representation. The second is the physical or layout representation. The logical
representation (LR) can be viewed as carrying the contents and organization of the document
as given by the author. The physical representation (PR) is the physical embodiment of these
contents for some device that can "play out" the media, be they visual or auditive. In
SCRIBE'S terminology [Un84], the LR is analogous to the manuscript and the PR is analo
gous to the [printable] document.

While the PR expresses what the end-user will see or hear, the LR is where all content
data is and almost all content editing takes place. The PR is the result of formatting the LR
into a viewable and printable form.

Given that the LR and the PR are separate and that document formatting is a mapping
from LR to PR, an inverse mapping from PR to LR must be supported to help the application
prx)grammer map user interactions with the PR into actions on the LR. The typical cycle for
applications that choose to use this document formatting model is thus (i) apply formatter to
LR to create or update PR, (ii) PR seen and/or heard by end-user on output device, (iii)
end-user interacting tlirough input device somewhere within visible or audible portion of PR,
(iv) input device location and action on PR mapped into location in LR, (v) LR edited and (yi)
LR reformatted into PR (Figure 10 on page 17).

Applications are not forced to use this formatting model. An application may choose not
to have a PR, preferring instead to combine everything into the LR and working the device
drivers directly from and to it. But in so doing such an application foregoes the formatter
provided with the system. In short, LR to LR formatting is not directly supported, LR to PR
formatting is. Consequently our discussion is limited to the latter.

The existence of two different representations for documents is a notion that has been
contemplated for some time. ODA also recognizes the same dichotomy (see [Ho84]). Their
terminology is slightly different: ouc LR is their "logical structure" and our PR is their "lay
out structure"; but in both cases they are hierarchical. The fact that all content data in ODA
must be within leaves (ODA's "basic objects") while in our case content data lacks this re
striction is not significant; (he two apprqaches are functionally equivalent.

I

2.5.1 The logical representation description
As we have seen, a tree representation needs a tree description and node type descriptions. The •
LR is a tree and therefore a document type includes an LR tree description and LR node type
descriptions. A typical LR description will include node types such as Chapter, Paragraph,
Figure, Footnote, and so on. *

I

17

r--------------App 1ication

Formatting

L
LR — Document Logical Representation
PR — Document Physical Representation

I
I

Figure 10. Edit/format cycle; In a multi-media terminal, the end user sees and
hears the document and interacts with it through various input devices ~
typically, a keyboard, a mouse and a speaker. Editing commands to the
application responsible for the document in question are issued relative to
the physical representation of the document which defines how it is seen
and heard by the end user. The corresponding location in the logical
representation is found by a SIGHT-supported inverse mapping. The
editing command is then executed in the logical representation. If
reformatting is deemed necessary and implicitly requested, the physical
representation is appropriately updated. If this cycle is fast enough, the
result of the editing command and any consequent reformatting is seen
immediately after the editing command is issued. This is what is meant
by real-time interactive editing/formatting. The inverse mapping can vary
in difficulty. At,one,extreme there is direct raw data editing which, since
they are normally shared by both representations, does not require any
inverse mapping except for the purposes of finding where reformatting has
to start within the logical representation (this usually entails finding the
branch in the LR that leads to the node containing the raw data). At the
other extreme there is editing of document parts generated by the
formatter from scattered data in the LR. Not shown in the figure is the
user-interface that decides how and where on the screen the document
visible media are to be displayed and how the document auditive media are
to played out through the loudspeaker. The user-interface is considered
part of the outside layer of the application and is not shown here since
SIGHT is meant to be user-interfqcc independent.

18‘

2.5.2 The physical representation description
The PR is a tree and therefore a document type includes a PR tree description and PR node
type descriptions. The PR tree description defines the nested box hierarchy which character
izes the desired document layout. Node types such as Page, Column, Line are often included.
The PR node type descriptions define the information associated with these boxes. Typically
such information includes dimension and positional values and visual properties (e.g. color)
of the boxes. The PR node type descriptions often define default values for such information,
thus fixing the skeleton layout of the document ahead of time.

' The PR tree and node type descriptions delimit the scope of the formatter's work. The PR
tree description tells the formatter what should and should not be included (e.g., through the
presence or absence of a Table_of—Contents node type) and overall aspects of the layout (e.g.,
through the number of Column node_types under the Page node type). The PR node type
descriptions tell the formatter what geometrical properties must be calculated (e.g. line
breaks) and where they should be stored, and which do not have to be calculated unless it is a
necessary step in the calculation of another node content data (e.g. word position within a line
during line break calculation).

2.5.3 Formatting specifications
The formatter is node driven. Instructions for the formatter — the formatting specifications —
are tied to nodes. In principle each node is supposed to carry the formatting specifications that
the formatter needs to format the node and its descendants. But because formatting specifi
cations tend not to change often among nodes of the same type, it is desirable to externalize
such common formatting specifications while leaving the capability of nodes carrying their
own private formatting specifications. Thus formatting specifications can be defined either
for node types, in which case they are external to the logical representation of the document,
or for node instances, in which case they are internal to the logical representation. External
formatting specifications for a document type apply to all documents of that type. Internal
formatting specifications apply only to the document that contains them. This allows the user
to easily override the standard formatting that applies to a document type. (See Figure 11
on page 19.)

, External specifications instruct the formatter on how to treat each node type in the logical
representation and how to map this node type into some desired node type or arrangement of
node types in the physical representation. With the specifications modularized according to
node types, it is possible to share node type formatting specifications across document types.
Thus, for example, the same formatting specifications for a node of type Paragraph can be
shared across many document types.

Internal specifications are like external specifications but apply only to a particular in
stance of a node type, consequently only to the document that contains it. Internal specifica
tions override the values given by the external specifications and define the formatting
environment for the node it applies to and all its descendants. Internal specifications are only
needed when a node type is to be treated differently than what is externally specified for this
node type. These specifications arc stored in the node in the form of (formatting) attributes,
the same kinds that are used to build the external specifications.

19

Doc

PARA_FS 1 Paragraph Paragraph Paragraph
* * *

indent
1 ine_sp
widow

1 1 ! 11
1

1

—^ no indent

------- internal
f

External
Formatting Formatting

Specifications Specifications

Figure II. External and internal formatting specifications: The internal override.
the external for the purpose of local and usually temporary formatting
changes. In this example, the external formatting specification tied to
nodes of type Paragraph define a default indentation style that the author
can override locally by redefining the corresponding attribute.

Because, like all other attributes, formatting attributes, internally or externally defined,
are inheritable, it is not necessary that the formatting attribute meant to apply to a certain
node type be carried by the formatting specification of that node type. It is enough that a
higher node type (one that is always found as an ancestor of the node type in question) carry
that information. This is not very significant for external formatting specifications since there
is no space saving by such relocation of a formatting attribute, but it is useful for an internally
defined formatting attribute that applies to all descendants with the stated node type. The
principle at work here is to percolate internal formatting attributes towards the document tree
root; and if it reaches this root and it is constant across documents, it probably should be
externalized.

The inheritance of formatting attributes impacts shared nodes in the expected way. A
shared node is potentially subject to different formatting specifications depending on the path
used to reach it from the root. We see this as a plus. The same data can be formatted in
completely different ways depending on where they appear in a document (Figure 12 on page
20).

2.5.4 Logical and physical document representations
Logical and physical representations are separate in our model. This is in contrast with other
editor-formatters where the information about the logical structure of the unformatted docu
ment and the physical data that describes the formatted document are mixed together. (For
example, POLITE [Pr81].)

The PR is in principle device independent though it is in practice created with a particular
device in mind. It is possible to create a PR for an ideal device (e.g., one that has infinite re-

20

solution) and let the device driver make the appropriate mapping to a finite resolution device.
But the simpler the device driver, the more device specific the PR will be.

The difference between LRs and PRs is in the node types that each contains. A document's
LR tree contains nodes that reflect logical components that are relevant to the author. Node
types such as Chapter, Section, Paragraph, Figure, Signature are typical. A document's PR
tree contains nodes that reflect the physical properties of the document as a visible and audible
object. Node types such as Page, Column, Line, Heading and Footing are typical. From the
editing point of view, there is little other difference between the two representations. They are
both trees that can be manipulated in principle arbitrarily through the editor. From the end
application's point of view however, there is a crucial difference between the two represent
ations. The creation and editing of a LR is under the application's control while the creation
and editing of a PR is normally the .responsibility of the formatter. The end-user has only in
direct control of the formatting process, a control that the user achieves through the creation
and editing of formatting specifications that serve as guides to the formatter.

This however does not preclude the application from overriding the formatter and editing
the PR directly. This is possible because the PR is like any other document tree. Of course it
is then necessary to reconcile the actions the application may perform on the PR against the
actions the formatter performs on this same representation. For the purpose of this paper, we
assume that the formatter has exclusive access to PR of documents.

A document's LR and PR could be completely separate trees but for space reasons it is
desirable that the deeper levels be shared, in particular raw data. One simple, albeit imprecise,
way to visualize this sharing is by assuming the raw data arranged as a linear string that is

<

21

partitioned differently by the LR and PR. The LR partitions this string according to logical
boundaries, e.g., where paragraphs start and end. The PR partitions it according to layout
boundaries, e.g., where the line and page breaks are (Figure 13)

Figure 13. A conceptual view of raw text data sharing between LR and PR: In this
simplified view, the LR partitions data according to logical components
defined by the author while the PR partitions the same data according to
physical components of the layout generated by the formatter.

The PR is often a simpler structure than the LR but, on the other hand, the former may
contain additional subtrees that are not pardoning the raw data but instead show how major
components are. organized. This is the case with the various front and back matter pages: ta
ble of contents, list of figures and tables, indices, etc. Our view is that these are physical rather
than logical components of a document. Of course, the information that they carry is implicit
in ,thc LR. Chapter.anà Section podes in the LR are ordered and partially define the table of
contents. The same is true of Figure and Table which define the "list of" pages. These PR
subtrees do share nodes with the LR. It should be easy to change the title of a chapter in the
LR and haye this change reflected immediately in the PR. By sharing the node that contains
the text of the title (very likely it will be a node of type Chapter), the change in the LR is in
stantly reflected in the PR (Figure 14 on page 22).

22

Chapter
Title-
Document model

Section
Title-

{]Document as

Paragraph
Text-

cThe ¡nherentl...

2.G 2. 1

L i ne

Paragraph

1 The most împo»..

Line L i ne Line Line

LliI
Body Bottom title

L_[
Page

LR

PR

Figure 14. Content sharing between logical and physical representations: The PR
not only has access to the data of LR leaves but also to any data in non-leaf
LR nodes. In this example the titles of chapters and sections belong to the
corresponding nodes. The formatter is instructed to paginate the
document, each page laid out with an area for the body of the text and a
bottom title that shows,the current chapter title. The body in this case is
simply a collection of lines. Title lirtCs consist of a formatter generated
chapter or section number followed by the title which is in the LR and is
shared with the PR. The bottom line also shares the Chapter title data and
appends to it a fofmatter generated page number^_____________________

2.5.5 Multiple physical representations from one logical representation
The separation of the LR from the PR allows us to have many PRs concurrently active for one
LR (Figure 15 on page 23).

23

Figure 15. Multiple physical representations from one logical representation; The
same document, as expressed by one LR, can be formatted in many
different ways depending on the formatting specifications (FS) that are
applied to the LR. Running the formatter on the LR for one FS produces
one PR. Each PR can then be displayed in its own window on the display
screen. It is also possible to display the same PR in many different
windows, but this is a user-interface issue that is irrelevant for SIGHT.

The end-user conceptual model of a single representation document model carries over
even if there are many PRs of one document. All of them still represent the same underlying
logical document so that a change in one PR is immediately reflected in all other PRs because
all changes are effectively performed on the LR that all these PRs share. Of course that im
plies that the end user conceptual model includes this notion of multiple PRs out of one LR.
This is necessary if the user is to understand that he can move from one representation to an
other and that editing one means editing all. This can be conceptualized as applying different
formatting specifications to the same document contents.

2.5.5.1 Activating multiple document types concurrently
As we have seen, each document bee, whether it is a LR or PR, requires a tree and node type
descriptions. For each LR/PR pair there is also a formatting specification (FS) that describes
how the LR is mapped to the PR. Consequently, in the case of multiple PRs from one LR, the
LR and each PR has its own tree and node type descriptions. For each PR there is a format
ting specification that describes how it is generated (Figure 16 on page 24).

Any of the components that constitute an overall document type -- the LR description, the
PR description and the FS mapping from one to the other — can be shared. The sharing of the

24

Figure 16. Multiple document types active at the same lime: The overall
characterization of a document type includes a set of LR descriptions
(Tree and Node Types), a set of Formatting Specifications (FS) and a set
of PR descriptions (Tree and Node Types). It is possible to share a LR
description among several document types. One LR description can be
used to maintain a document's logical representation while different
FS/PR description pairs are used for different renditions of the document.

LR description has just been described. It is also possible to share a PR description or to share
a FS mapping (Figure 17 on page 26). Using different FS's for the same PR description
normally occurs when minor stylistic changes are desired, such as different fonts, different

25

form of highlighting, different paragraph styles, different page numbering, etc. without
changing tlie overall layout structure of the formatted document. Using different PR de
scriptions lor the same FS normally occurs when structural changes are desired without
stylistic changes. A PR for a memo is quite different from a PR for a book, for example. One
will not have a Table of Contents while the other will. But keeping the same FS for both gives
a surface appearance of sameness, a style uniqueness that a publishing department may want
to preserve across many different kinds of documents.

2.S.5.2 Physical representations viewed as formatted results of database queries
The LR that is subject to formatting has been selected from a database of documents. In our
model, this LR is a subtree of a larger tree that contains all documents. The LR delimits the
scope of the editing process. This delimitation process can continue within the LR for the
purposes of formatting, that is, only a portion of the LR can be made visible to the formatter
when generating a given PR. If multiple PRs are generated from one LR, it is possible for
each LR-to-PR formatting process to look at different portions of the LR. These portions may
or may not overlap. These formatting processes do not alter the basic structure of the LR nor
its data and therefore can run independently without interfering with each other.

For example, a document containing text and a spreadsheet can be set up so that two dif
fering PR's are presented to the user. The first PR presents the document as it will be printed.
In this printed form, the author has chosen not to include the entire spreadsheet but only the
row that shows totals. The second PR presents only the spreadsheet. The spreadsheet is pre
sented in its entirety so that the author can edit the spreadsheet in the expected way. For the
first PR, all the nodes that make up the spreadsheet except for the last row are excluded from
the formatting process. For the second PR, all the nodes that make up the text are excluded. .

This conceptual decomposition of a LR is normally defined from outside the LR (e.g. we
externally define that all nodes of type A in the LR are included in the formatting process
while nodes of type B are not). It is also possible to include/exclude nodes from the formatting
process conditional to the contents of nodes within the LR (e.g. we externally define that all
nodes of type A in the LR are included in the formatting process only if their size attribute
contains a value greater than some given threshold).

This capability to select parts of a LR for generating PRs is a form database querying. In
this view the LR is the active database and the PRs are the properly formatted results of
queries into this database. For example, a LR for a phone book might include various related
data such as name, office phone number, alternate phone number, recording machine avail
ability, department number, location and computer logon id. One may be interested in seeing
only names and office phone numbers. This query can be expressed through the PR tree and
node type descriptions. If the underlying LR is changed, these PR descriptions are then used
to check if the change requires reformatting the PR. In short a query in SIGHT is a live PR
document that is always kept updated as the underlying database (the LR document) is
changed. Document retrieval, editing, formatting and database querying are thus combined
into one unified mechanism.

26

2.6 An extended document environment
If documents follow the above tree-structured model and they are grouped in hierarchically
organized directory structures, one can implement the latter as an extention of the former

27

'igurc 18). A directory at any leve! is seen just as another document albeit one with different
operties. In this extended view, any node can be a root of a document. A document thus
îcomes a very general notion. What we think of traditionally as a document is simply a
trticular case of our more general document object; one that has as its root a node of a cer
io type.

Figure 18. An extended document environment: All documents are subtrees of a
hierarchical directory structure that has a single root ancestor called the
primordial or master root. This example tree shows that extending the
model to cover an operating system notion such as directories allows
sharing to occur across documents and across directories.

' The reason for extending the model this way is to apply it to not only the editing of docu-
lents in the traditional sense but also to the manipulation of higher level structures such as
¡rectories. There is little difference between moving a paragraph from under one chapter to
lother and moving a document from one directory to another. There is little difference be-
veen moving a subset of words from a paragraph to another and moving a subset of sub-
ircctories from a directory to another. In our model all are tree editing operations. Tree
iiting thus becomes an all encompassing tool that applies to all levels of activity, ranging
om text editing to tasks normally associated with the operating system. The same should
Î said of editing contents of nodes. Node editing must apply globally. Changing the name of
directory is not much different than changing the title of a chapter. Thus by keeping all

iformation within one unified hierarchical data base, all operations over this data base are
one through one uniform mechanism. What we achieve with this extended model then is
niformity.

A welcomed side effect of this extended model is that, because node sharing is supported

28

away with the notion of links (a la Unix), which are unsatisfactory as a means of keeping track
of who is sharing whom. In our model a file (if we allow ourselves to use the term) can be in
many directories at the same time. There is only one copy of this file and it knows who its
parents arc. Deleting this file from one directory does not necessarily mean deleting it from
the other parent directories.

»

29

3.0 Document Editing, Formatting and Presentation

SIGHT'S sofware architecture is similar to Etude's. Etude's user-interface is SIGHT'S appli
cation and the editor/formatter/display complex is the same in both except that we prefer to
call the last stage "presentation" rather than "display" given our support of multi-media. In
this section we describe how the editing subsystem is organized, how the formatting subsystem
is related to the editor and document types influence the editing and formatting processes, and
we conclude with some remarks about document presentation.

3.1 Document editing
sight's editing subsystem includes two major components: a general editor for trees and
their contents which we call the Core (or Kernel) Editor and an open collection of specialized
editors which we shall call, accordingly. Specialists.

3.1.1 The Core Editor
The Core Editor is a generic editor for trees. It is subdivided into two parts: a Tree Editor for
manipulating trees without affecting the contents of nodes and a Node Editor for manipulat
ing the contents of nodes without affecting where these nodes are in the tree. The Core Editor
can in principle have access to any part of a tree. It is up to the application programmer to
decide when to use the Core Editor or when to use a Specialist.

3.1.1.1 The Tree Editor
The Tree Editor is a collection of functions for creating and editing trees, for traveling and
locating oneself within them and for making queries about the shape of a tree and one's
whereabouts within it. Trees may or may not contain shared nodes. The Tree Editor's primary
task is to manipulate parent-child and sibling-sibling relationships between nodes. It may
read the contents of nodes but will not change them, except, of coursé, for the pointers that
define the parent-child and siblirig-sibling relationships and also, as a result, inheritable at
tributes.

, I

The Tree Editor is controlled primarily by the application, but tree editing operations are
constrained by the tree description in effect for the document tree type being edited at that
moment. The Tree Editor will not create a tree that docs not satisfy the tree description and
will not edit a tree if that means it will no longer satisfy the tree description. When an editing
command is issued from an application to the Tree Editor, it will check the effect of the edit
ing command on tlie tree vis a vis the tree description. If the result is a valid tree, the command
is executed. If the result is an invalid tree, the Tree Editor will attempt to "complete" the
command so as to make it valid (see Figure 19 on page 30 for a simple example). Failing
that, the command is not executed and the application is warned of the failure.

3.1.1.2 The Node Editor
The Node Editor is a collection of functions for creating, modifying and removing node attri
butes and data and for editing and retrieving their values. The Node Editor is not concerned
with the parent-child and sibling-sibling relationships carried by nodes.

30

Tree Description-

Document
Chapter
Paragraph

Chapter*
Paragraph*
Sentence*

(Command: insert sentence into second chapter)

automatical1y
inserted

inserted
node

Figure 19. Tree Editor and tree description interaction: In this example a sentence
is inserted into the empty second chapter of a document. According to the
tree description for this,document, a Sentence node can not be a direct
child of a Chapter node, therefore the Tree Editor will automatically insert
a Paragraph node between the previously childless Chapter node and the
newly inserted Sentence node.

The Node Editor is controlled primarily by the application, but any node editing operation
is constrained by the node type description in effect for the node being edited. The Node Edi
tor will not create a node that does not satisfy the node type description and will not edit a node
if that means it will no longer satisfy its corresponding node type description. When ah editing
command is issued from an application to the Node Editor, it will check the effect of the ed
iting command on the node vis a vis its node type description. If the result is a valid node, the
command is executed. If the result is an invalid node, the Node Editor will attempt to "com-

31

píete" the command so as to make it valid. Failing that, the command is not executed and the
application is warned of the failure.

The Node Editor can call the Tree Editor. This is important, for example, when condi
tional node type descriptions have external dependencies whose values can only be reached by
traveling within document tree structure, such traveling capability being exclusive to the Tree
Editor.

3.1.2 The Specialists
Although the Core Editor is general enough to enable an application to edit any part of a
document tree or any node contents, it nonetheless remains a generic program without much
expert knowledge. Since we can not predict all the possible applications that may use SIGHT
and the kinds of expert knowledge they may need, such expertise is relegated to ancillary
program modules called specialists. These specialists are under control of the Core Editor
which can at any time pass control to any of them for node-specific editing. In this sense
specialists are extensions of the Core Editor. There is no limit to the number of specialists that
cah coexist with the Core Editor. With a simple interfacing protocol between the Core Editor
and the specialists, new ones can be written without affecting the Core Editor and the others.

The kinds of specialists that are needed in an interactive document preparation facility
include media specialists (text, line graphics, images, handwriting, audio and video) and spe
cialists for mathematic formulae, tables, business graphics and spreadsheets. These special
ists perform various input, output and internal functions specific to the type of data they are
assigned to handle. For example, a text specialist is, at the simplest level, able to extract words
and sentences out of an input string of characters and is, at more complex levels, able to indi
cate typographical errors and incorrect grammar. A line graphics specialist is able to take
over from the Core Editor in manipulating document figure subtrees and possibly execute
complex geometrical computations and perform drawing synthesis. The handwriting specialist
is expected to perl'orm recognition and plug the result into a node, likely of type word. The
audio specialist is expected to do the same on input and, in addition, speech synthesis on out
put. The last two should also allow one to store handwriting and audio data without recogni
tion.

The protocol between the Core Editor and a specialist is in essence very simple. The Core
Editor passes a node to a specialist. This node defines the root of the tree to which the spe
cialist is constrained. The specialist has then total control of this tree. A specialist may in turn
call any other specialist or a new instantiation of the Core Editor to work on any deeper sub
tree of the tree under its control. Again the protocol simply involves passing a node that serves
as the root of the tree to which the callee is to be constrained. This form of alternating recur
sive calls can be carried to any level of nesting, though in practice the nesting is almost never
more than two or three. The Core Editor and the specialists can be instructed on when to pass
control to each other. This will normally occur at specified node types.

The advantage of this organization is its modular construction. The Core Editor remains
the generic editing mechanism available to all at any time. The specialists are the specific
editors, selectively loaded only for applications that need their services.

32

The notion of having specialists, although not explicitly used by ISO's ODA, does not seem
foreign to that architecture w^hich can be gathered by ODA's notion of substructures within
its basic objects. It appears that the scope of ODA does not give it access to these substruc
tures, therefore requiring specialized editors to create and manipulate these substructures. If
this assessment is correct, our model is very similar to ODA, except perhaps for the fact that
our model is more flexible in that it can be given access to subsubstructures of substructures
belonging to a specialized editor. This form of recursion does not appear to be supported by
ODA.

3.1.3 The editing environment
Figure 20 shows how the constituents of the editing environment interact. (The numbers in
parentheses below correspond to the numbers in the figure).

1

Î

p-- ^

Documents
i I
L J

Figure 20. Tree-structured document editing organization

(1) An application that uses SIGHT is responsible for defining or selecting a pre-defined
(logical) document type which will normally remain unchanged for the life of a document
created under that type. As explained before, the document type, as far as the tree and node

33

contents are concerned, consists of a tree description and several node type descriptions. An
application may support only one document type or it may support more than one. The root
node of a document should normally tell the application to wliich document type it belongs.
When the application reads in a pre-existing document from storage, its first task is to fetch
the appropriate tree and node type descriptions from its document type data base. For each
active document, there is an active document type; but for each document type, there may be
more than one document.

(2) The application interacts with SIGHT by making calls to a Core Editor. These calls
are essentially editing commands and queries issued against the document. The Core Editor
executes the command or query and responds to the application on its success or failure in
carrying out the command or with the answer to the query. The Core Editor is subdivided into
a Tree Editor and Node Editor.

(3) The application can also make calls to Specialists. Specialists are mode or med^a spe
cific extensions. Their main purpose is to perform functions that are not supported by the
Core Editor, such as text analysis, mathematical computations, data compression and
encription, handwriting and speech recognition, image processing, etc. As far as editing per
se, they would be unnecessary given the generality of the Core Editor, but even then Special
ists may have the advantage of being optimized for their supported mode or media and of af
fording a more appropriate interface to their individual tasks. Where one draws the line
separating Core Editor from Specialists is an implementation decision, and often their
functionality will overlap, leaving to the application the decision of which to use.

(4) Specialists can, similarly to applications, send document editing commands to the Core
Editor. In this sense specialists act as intermediary applications. Thus, a spreadsheet specialist
may do all the mathematical computations typical of this mode of data organization but may
do all the equation editing with the aid of the Core Editor.

(5) The Tree Editor uses the currently active tree description to check on the validity of
the document tree for all tree alteration commands. Only those commands that will not in
validate the document tree are allowed to execute.

(6) The Node Editor uses the currently active node type descriptions to direct how nodes
should be edited. It can check when attributes and data can be added to or removed from a
node without invalidating it. It can, to a certain extent, check whether values assigned to at
tributes and data are valid or within allowable bounds for a given node type.

(7) The Tree Editor and Node Editor can pass control to each other. For example, when
the Tree Editor adds a new node to a tree, it can only create an empty node and attach it to a
branch in the tree. It must then ask the Node Editor to fill in the node with the attributes and
data, if any, that this node must contain according to the node type description assigned to the
node. Alternatively, the Node Editor, after removing an attribute from a node, may find this
node to be empty and then call the Tree Editor to remove the node from the tree.

(8) The Core Editor can pass control over to any specialist, and a specialist can pass epn-
trol over to the Core Editor, recursively. This allows specialized trees (i.c. trees that are meant

34

by the application to be handled by a specialist) to be nested within generic trees (i.e. trees
that are meant by the application to be handled by the Core Editor) and generic trees to be
nested within these specialized trees to any level of nesting. As one travels deeper into these
trees, control then passes back and forth between the Core Editor and specialists.

(9) The Core Editor is a collection of procedures that make use of object management
procedures. While the object management subsystem implements a network data-base, the
Core Editor enforces a hierarchical (lattice) organization.

(10) Specialists also have direct access to the object management procedures. They should,
like the Core Editor, enforce a hierarchical (lattice) organization. If they don’t, the applica
tion is responsible for isolating all cyclic structures from the Core Editor and give only the
proper Specialist access to them.

3.2 Documentformatting
Since we have targeted SIGHT to be used first in building an interactive editor-formatter, the
formatter must execute in real-time. In principle, it should be possible to reformat a document
quickly, or at least what is visible of it on the display, after every inserted letter or simple
mouse-based editing. Because we do not expect office workstation technology to give us this
kind of performance in the short run, various techniques are used to alleviate this computation
bottleneck. Incremental formatting, where only selected parts of a document are subject to
real-time formatting, and imperfect formatting, where local reformatting is accepted for dis
play even though preceding material has not been reformatted, are two important techniques
that improve responsiveness. Such techniques have been applied before, for example control
ling the "degree of safety" for interactive formatting in the Janus formatter [Ch82]. If these
and other secondary techniques are not enough for a given workstation, the reformatting
granularity can always be raised to the word or even paragraph level.

3.2.1 The Formatter
The formatter is a priviledged application that exists immediately above the editing environ
ment. Its purpose is to map LR's into PR's to be displayed, printed or heard. Since LR's and
PR's are separate, the formatter reads the contents of a LR and creates or updates the asso
ciated PR; the LR structure and its data are not changed.

It is possible to have more than one PR for one LR, as seen in the previous chapter. The
formatter can be called to maintain several PRs of a single LR concurrently. (We are as
suming a single-user system, therefore there are no contention problems when editing one LR
from many different PRs.) So it is possible to edit a document through one of the PRs and
have the others updated concurrently as the underlying LR changes.

The formatter is a program that traverses the LR in traipse form (i.e., visit parent, visit
children, visit parent again). It is essentially node type driven, that is, for each node visited
there ar.e certain actions taken according to the node's type. When the node is first visited, a
format environment is established for the node and its descendants. When the node is visited
again and exited, this format environment is closed.

35

The formatter may not visit all the nodes in a LR. Nodes or node types may be included
in the LR but may be defined as protected from formatting (i.e., no format). The formatter
is to take such a LR node and its subtree "as is". It must then be capable of calculating or be
told of the physical dimensions of the object represented by the subtree. A node is created in
the PR that carries these dimensions and points to the root node of the subtree in the LR. This
technique is useful for graphic figures and annotations which, except for positioning and pos
sibly zooming, do not normally require the services of a formatter.

Besides no-format, another reason for excluding nodes from the formatter is no-display.
Certain nodes or node types may carry information that is not meant for inclusion into the
document but only for use to infer other data that may appear in the document. A typical ex
ample of this are the mathematical equations that regulate the behavior of a spreadsheet.
These equations will not show in the document, only their results. On the other hand, the
end-user will very likely need to edit these equations. This can be done through another PR
which is formatted with equation nodes included and all other data nodes excluded from the
formatting process. In short, the end-user would be manipulating two PRs: one, the principal
document and, two, a "document" showing the underlying mathematical structure of the
spreadsheet(s) appearing in the principal document. Nodes excluded from one PR are in
cluded in the other and vice-versa. This constitutes an example of multiple document views
by selective exclusion of LR nodes.

As the formatter traverses the LR while bypassing no-display nodes and the descendants
of no-format nodes, it builds or updates the associated PR(s) also in traipse form. The model
that underlies a PR is similar to Knuth's boxes [Kn79]. Each node in the PR corresponds to
a box. The PR thus expresses a hierarchy of boxes and the data that go into the leaf boxes.
The nodes contain mostly dimensional and po.sitional information, visual properties (color,
highlighting, reverse video, etc.) and media-dependent properties (e.g., font names).

Normally the formatter is the only program that creates and edits PR's. However, since
a PR tree is like any other document tree, albeit built out of very different node types, the
application can in principle bypass the formatter and edit a PR directly via the Core Editor
and specialists. Of course a PR so edited will almost certainly differ from the PR produced
by the formatter and, if the formatter is allowed to work on this PR again, it will destroy these
editing changes and reestablish the PR as before. If this kind of editing is to remain uncor
rected by the formatter, the formatter must be prevented from updating the affected part of
the PR. This can be achieved by properly tagging the root nodes of the subtrees that are not
to be updated.

The formatter has different responsibilities depending on the media being handled. In the
case of text, the usual h&j (hyphenation and justification), pagination and font handling
functions are present. In the case of line graphics, the formatter may be either instructed to
take a figure "as is" from the LR (in which case the PR simply points to the figure subtree in
the LR) or to change the style of the drawing (e.g., adding shadows to box outlines and mak
ing outlined arrows out of thin arrows in the original user's drawing) in which case a subtree
with the altered drawing may have to be created and inserted in the PR.

36

The formatter can synthesize PR contents that did not exist explicitly in the LR. Tables
of contents, lists and indices of various kinds are the most traditional of these synthesized
contents. Less trivial and quite useful are business graphics that the formatter is capable of
automatically generating, with the aid of a graphics specialist, and inserting in the proper
place in the PR. The data for building such business graphics may come from spreadsheets
maintained within the LR and which can themselves be targeted for formatting, say by se
lecting subsets of columns and rows and building these into tables to be inserted in the PR.

It is unnecessary to store a document's PR except for tagged nodes. A PR can be regen
erated when the LR is loaded for editing or viewing. However, regenerating a PR takes time,
and it is better for documents that arc used frequently to have all their relevant PR's saved.
T^e existence of a PR at all times also helps reduce the number of passes through a document.
The PR intrinsically carries a record of the current values for cross-references. This is analo
gous to SCRIBE'S "one pass formatter" which is obtained by saving, between runs of the for
matter, an auxiliary file containing all the necessary information for resolving
cross-referencing. In SIGHT the linkage between a LR and a PR achieves this purpose.

Though two passes are enough in most cases, it is possible to have a document so deviously
arranged that an arbitrary number of passes arc needed (Figure 21 on page 37). It is also
possible to have oscillations, the prototypical case happening when two parts of a document
influence each other in contrary ways, one part forcing a correction on the second which, when
made, obviates the correction. Ad hoc approaches can detect such rare phenomena.

3.2.2 The formatting environment
Figure 22 on page 38 shows how the constituents of the formatting environment interact.
(The numbers in parentheses below correspond to the numbers in the figure.)

(1,2) An application that uses SIGHT is responsible for defining or selecting pre-defined
constituents of a document type. They are: (i) the tree and node type descriptions for both the
logical and physical representations and (ii) the formatting specifications.

(3) The formatter is under control of the application. The application can instruct the
formatter when, where and how much to format.

(4) The formatter uses the LR tree and node type descriptions in deciding how to traverse
the LR, in selecting appropriate formatting specifications among those made available to the
formatting process (6) and in determining the appropriate specialist to call for media specific
tasks. For example, a node of type Figure may require intervention by the graphics specialist
if the formatter decides the figure can not fit into a page and, consequently, must be scaled
down or cropped.

(5) The PR tree and node type descriptions instruct the formatter on what kind of PR is
desired and what results from the formatting process must be saved. For example, the PR tree
description may instruct the formatter to include a table of contents and an index; the PR node
type descriptions may instruct the formatter to keep only line break information and forget
about relative word positions within a line.

37

«

«

Ifll

(Fig 3)

-

-101- -102-

Figure 21. Document needing three pass formatting: It is possible albeit rare for a
document to need more than two passes of the formatter. In this contrived
example, an unresolved page reference for a figure allows the figure to be
placed on the next page (101). During the second pass, the page value is
obtained and inserted in the text causing the text to increase in length and

* the figure to be pushed to a subsequent page (102). The third pass finally
gets the correct page number for the figure reference.

(6) The formatter uses the formatting specifications to make some, if not all, of the layout
calculations, font choices, etc. The formatting specifications should be complete enough to
cover all valid LR node types; in other words, every time the formatter traverses a node of a
certain type, there should be a part of the formatting specification that says enough about that
node type.

(7) The input to the formatter is an LR, which is traversed through the Core Editor.

(8) The formatting process maps the LR into a PR.

38

Figure 22. Ttíc foffeàtting ènvirorunent
-------- - » ‘‘^.^'^1.'^ ■ * T- ■* ■■— ■

(9) The output of thè formatter is a PR, which is created or updated through the Core
Editor and specjaijsts.

"f

(10) The forrhaiter makes extensive use of the Core Editor for the purpose of incremental
and imperfect formatting, both requiring the maintenançe of markers that delimit areas that
have been formatted, that are pending [re] formatting and that require additional passes of the
formatter.

39

3,3 Document presentation
How documents should be presented for viewing is formally not a part of SIGHT, conse
quently our discussion of document presentation is limited to a few words.

Documents arc seen and heard through their PR's. The formatter produces a PR that can
be tailored for any particular device or for a generic device (say one with infinite resolution).
The translation of the PR to a display, a printer or loudspeaker is done by a presentation spe
cialist whose minimal qualifications include the ability to traverse the PR tree and read the
contents of nodes for data and layout information. This specialist may issue commands di
rectly to a device driver (for example, through a VDl or GKS interface) or may create an
intermediate representation (e.g., a bitmap in memory). Because the sophistication of the
presentation specialist may vary, the formatter can be instructed to produce a PR that con
tains the proper amount of detail needed by a given presentation specialist. If, for example,
the presentation specialist is capable of justifying a single line, the PR does not have to go
further than line breaks. If, on the other hand, the presentation specialist can only catenate
letters into words, the PR must also give the position of every single word in a line.

Figure 23 on page 40 shows how the presentation specialist interacts with the rest of the
system:

(1) As usual, the application controls the Core Editor.

(2) The application can communicate with a Presentation Specialist which interacts with
input and output devices.

(3) Output to presentation devices (display, printer and loudspeaker) starts with the doc
ument PR which is scanned by the Core Editor under control of the Presentation Specialist.

(4) The scanning of the document PR is mediated by the active PR description.

(5) What parts of the document have to be scanned is determined by the Presentation
Specialist.

(6) The scanned parts are farmed out to the appropriate device drivers.

(7) In the reverse direction, input devices (keyboard, locator and microphone) send their
data to the Presentation Specialist.

(8) Input can be mapped via the Core Editor into a particular location within the PR.

(9) Having found the location within the PR, the Core Editor can be requested to map the
location in the PR into a location in the LR.

«
(10) The LR description may help guide the inverse mapping from PR to LR.

(11) Thc Core Editor can be instructed to make editing changes at the location just found.

I

40

I

[

I

L_______________________________________

Figure 23. The presentation environment

j

V-

Like all specialists, the presentation specialist has access to the Core Editor. Through it
this specialist can maintain markers over the LR and PR to indicate, for example, what parts
of a document are visible in what windows. In addition the Core Editor performs the critical
inverse mapping from PR to LR. Thus, if the presentation specialist specifics a location within
the PR (possibly the location of a key press or mouse button click), the Core Editor can pass
to the application(s) owning the associated LR the corresponding location within the latter.

41

4.0 Document Tree Management

The object management component mentioned in the previous chapter is a network data base
called PHOVIA. It is responsible for all aspects of memory management and provides to
higher levels of SIGHT a collection of base functions for creating, manipulating and traveling
around the network of data elements in the data base. SIGHT uses PHOVIA to structure an
essentially hierarchical data base with sharing allowed and to make available to the applica-

* tion writer a more comprehensive set of functions for creating, manipulating, formatting and
traveling over document trees. In this section, we describe how nodes are organized internally
and how nodes are used to build trees.

4.1 Nodes as element lists
From the point of view of the document model explained in Chapter 2, there is only one kind
of object out of which all documents trees are built: the node. From an implementation point
of view, however, one must be able to handle the complicated internal organization of a node.
Nodes must be able to grow and shrink as attributes are added or removed, as data are in
serted or deleted and as they gain or lose children. Nodes are therefore dynamic structures
that are best constructed out of more primitive objects. Consequently we have taken a two tier
approach to object management. In the bottom tier we find objects we call elements. In the
top tier we find the node objects. A node is constructed as a linked list of elements. Each ele
ment has an identifier type tag that indicates what kind of information the element carries.
Certain element types carry pointers or fixed size data while others carry variable length data
(Figure 24).

Figure 24. A node as an element list: A node is conceptually a doubly-linked
circular list of elements. Each element has an identifier type,
previous/next pointers and an id-type-dependent data field. (The
previous/next pointers will not be drawn in the later figures.)

42

Given our document model, the most important element types are the ones that define
parent and child relationships. The Parent and C hild identifier types arc the most basic
pointer elements. If a node has one parent, the normal case, it will contain one Parent type
element. If it has five children, it will contain five Child type elements. If the node is shared
by more than one parent, it will contain one Parent type element for each parent node that
shares it (Figure 25).

■ Figure 25.

'o?

P Q

p P : :

—o

u- N -

“■*0

u
(

.

3 C3 3

W ir

ABC

Parent apd Child elements: A node eontains one Parent element (P) for
each of its parents and one Child element (C) for each of its children,' A
Parenl element is a pointer to a parent node. A Child element is a pointer
to a child node.

Next in importance are the element types that eorrespond to attributes. The Attribute
identifier type is particular in that it is subject to the mechanism of inheritance described in
Chapter 2.

' The final and most generic clas^ of element types - Datum - includes all data of fixed or
váriable size. Variable sized data elements carry their own length field. Fixed sized data el
ements, on the other hand, have their length defined outside in a table of element type defi
nitions. The Datum type differs from the Attribute type only in that the former is not subject
to inheritance.

While the parent and child relationships have their own specific element types, the sibling
relationship is implicit and exists through the ordering of elements in a node. More specif
ically the ordering of a node's children is defined by the ordering among tlic child element
pointers carried by tlie parent (Figure 26 on page 43).

The ordering of the children is thqs not carried by the children but by the parents. This
must be so if node sharing is to be supported. A node that is shared belongs to more than one
sibling list and it would be cumbersome for it to keep track of its position in every one of these
lists. This is better left to each parent node (Figure 27 on page 43).

In short, the order of elements in a node can and will, in the case of child pointer elements,
have meaning. It is up to the application programmer to establish a convention on how ele-

43

A B C D

Figure 26. Children ordering: The order among children is defined within their
parent. The order is the one defined over the respective Child type
elements contained in the parent node. In this example, parent N has four
children — A the oldest and D the youngest. Changing the order among
children is simply a matter of changing the sequence of Child elements
within the parent; the child nodes are not affected in any way.

ments should be organized within a node and to assure that this convention is followed. The
PHOVIA object management system does not enforce any convention.

4.1.1 How nodes are put together
The convention used by SIGHT groups all Parent elements together followed by all Attribute
elements followed by intermixed Child and Datum elements (Figure 28 on page 44).

The reason for intermixing Child and Datum elements is to maintain the order among all
the data that belong directly or indirectly to a node. The Datum elements in a parent node
belong directly to it. The Datum elements in children and their descendants belong indirectly

Figure 27. Children ordering under node sharing: Because children ordering is
defined within parents, children can be freely shared without the children
having to worry about who their surrounding siblings are. In this example,
shared node O has immediate siblings N and P when taken to be a child
of node X and siblings I and L) when a child of node Y.

44

to the parent node. But whatever levels the Datum elements find themselves in, when the
document tree is traversed from left to right while moving up and down branches, the Datum
elements must be conceptually strung together in sequence (Figure 29 on page 45).

4.1.2 Eiement type identifier aliases
PHOVIA provides for application-defined element types. It will keep track of their size and
include them in the inheritance set if they are defined to behave as attributes. Applications
can define their own ’ primitive" types. In addition element types can be defined as aliases of
previously defined types, primitives or not. When an element type A is an alias of element
type B, the properties of B apply also to A. Typically, an application will define new attribute
element types - e.g., Color - as aliases of the primitive element type Attribute. It will define
new data element types -- e.g.. Line Segment - as aliases of the primitive element type
Datum. Finally, it may define new child element types - e.g.. Word - as aliases of the primi
tive element type Child.

Aliasing to the element type Child serves to define node types. The disadvantage with this
form of node type definition is that the type exists in a parent node rather than in the node to
which it applies. On the other hand, it has the advantage that a shared node may have differ
ent types; each of its parents can look at the shared node in its own way (Figure 30 on page

The alternative to this form of implicit" node type definition is to have each node carry
a Node-Type element whieh contains the node's type identification (Figure 31 on page 47).
In this case the Node—Type element type is an alias of the Datum given that node types áre
not inheritable.

45

«

4

«

5

Aliases can be cascaded to any arbitrary level. For example, one can define an element
type Point which is an alias of the element type Coordinate which is an alias of the element
type Number^Tair. Aliasing thus allows one to create levels of abstraction and encapsulate
application-defined semantics in a hierarchical fashion.

Aliasing as described enforces a strict tree organization among element types. It is possi
ble, however, to define a new element-type to be an alias of more than one already existing
element-type. For example, the Point element type mentioned above will also be an alias of
Datum (since it is not subject to inheritance). Use of this facility requires care since the se
mantics of the more primitive element types of which the new clement-type is a sub-class may
conflict. For example, an element cannot be both an alias of Child and Parent. PHOVIA will
not check for conflicts of this sort. It is the application's responsibility to validate the con
sistency of the element type alias hierarchy.

46

4.1.3 Element type identifier table
Element types defined by applications are added to an element type table maintained by
PHQVJA and which contains at the outset a small number of primitive types of which the
Parent, Child, Datum and Attribute types are the most important. This table contains per
element type (a) its unique identifier, (b) whether it is of fixed or variable length, (c) the field
length for fixed length elements, (d) its aliases and (e) its name. The name 0/ the element type
is included, in part because one can not be sure that independent data bases, running on dif
ferent workstations, will use the exact same ideniifiers for equivalent element types. If a
document is transmitted from one independent data base to another, one also transmits the
element type table used to create the document in the source data base. At the receiving end
the document is displayed using the accompanying table or is changed to reflect the identifiers
used by the receiving workstation. In the latter case, the accompanying table is discarded
afterwards. Of course all this assumes that element type names used by the different data
bases are the same. If not, an additional name to name equivalence mapping would have to
be created among workstations desiring to exchange documents in order to bridge different
naming conventions.

4.2 How trees are put together
Trees arc bpilt by connecting nodes via parent-child pointers. Each node has Parait elements
that point to its parents. The only exception is the root node which does not have any parent.

47

Each node that is not a leaf has Child elements that point to its children (Figure 32 on page

The minimal cost for building a skeleton tree, i.e., one where nodes contain only Parent
and Child elements can be calculated by counting the number of branches in the tree. A
branch is defined here as the parent-child relationship that connects two nodes. In the example
tree of Figure 32 on page 48 there are ten branches. Each branch implies a pair of elements,
a Child element at the top extreme of the branch and a Parent element at the bottom extreme
of the branch. The cost of a Child element is equal to that of a Parent element since both are
pointer types. The cost of a pointer type element is the pointer itself (p bytes) plus the cost of
the element identifier (/ bytes) plus the inter-eiement linkage (« bytes — n for neighbor). The
cost for a branch is therefore 2(/>+/+«j. In the current implementation: p is four; i, two; and
«, four. Consequently, twenty bytes are needed for a branch; thus 200 bytes for the example
tree, it is more exact to give the cost in terms of branches rather than nodes because of node
sharing. (In the case of a tree without shared nodes, it docs not matter because branches and
nodes are related by a trivial graph property - branches equal nodes minus one.)

48

4.3 Node element management
Node element management is principally responsible for alibcating and deallocating elements
in memory. Besides the usual initialization and' termination functions through which the ap
plication accesses and releases the root of the master tree; the application is provided with th^e
acm« H 7 changing and moving eleLnts within and
across nodes, for keeping track of one's location in a tree and traveling within it for makins
various types of queries and for other miscellaneous actions. ^

Because the number of elements
trees are often only partially loaded

can be enormous for large size dobuments, document
in main memory. To decrease the frequency of paging,

49

elements are clustered according to their proximity. As a minimum, elements of a node are
clustered together so that the clustering problem need be analyzed only at the node level (for
example see [Sc77]).

A

■i"

*

6

50

51

5.0 Conclusion

In Figure 2 on page 7 we gave an example of a document tree that partitions the document
down to the word level. Some will argue that this is too fine a partition if the document storage

* requirement is to be kept relatively small and that one should not go below the paragraph
level. Some will counter with the argument that a finer partition allows more detailed for
matting (e.g. changing the font within a sentence) and that certain types of searches may be
faster (e.g. getting the fourth word in the second sentence of a paragraph). In terms of our
model it does not matter. It can support any hierarchy, deep or shallow, that the user chooses
to define. Deep hierarchies have the advantage that they give greater and more convenient
control over the finer structural parts of a document. Shallow hierarchies, on the other hand,
need substantially less storage space. (Speed judgments are hard to make because time effi
ciency depends on the kind of operation that is performed on the tree.) A natural compromise
is a shallow hierarchy that can be locally extended depthwise whenever different attribute
values need be assigned to adjoining small structural parts of a document (as illustrated in
Figure 29 on page 45). In the case of text, this probably means having paragraph nodes as
leaves of the tree in general, but allowing a paragraph node to be refined into sentences, words
and even characters. Another possible compromise is to assume a deep hierarchy that gets
compacted from bottom up as long as attributes of adjoining nodes carry the same values and
data carried by these nodes can be concatenated. The latter approach is the one taken by
PHOVIA. The former approach is one that an application programmer can implement him
self via proper document type definitions and use of the Core Editor and the appropriate spe
cialists.

Though node sharing makes possible many useful functions, it does exact a price in added
complexity to the Core Editor. Most editing functions provided by the Core Editor must be
able to recognize when subtrees they are handling contain nodes that are shared by other
subtrees. This is critical in functions such as tree deletion when one can not just sever the root
of a subtree from the master tree. Whether the user has chosen to include the shared nodes
in the deletion or exclude them, their existence requires careful scissoring of parent-child
pointers.

1
A slightly different problem occurs with the copy tree operation. Should node sharing be

preserved when a subtree is copied? Our approach to these kinds of problems is to make
available to the application all identifiable and reasonable options. It is no surprise then that
all this additional computation for handling sharing represents a performance degradation
that, depending on the supporting hardware, can slow interactive editing. But, given the re;
search nature of this project, efficiency is often sacrificed in favor of capability.

Our forrnatting model is characterized by the separation of the logical representation of a
t document from its physical representation(s). This does represent a space penalty even though

the lower levels of these representations are normally shared. Maintaining separate logical
and physical representations implies a considerable cost in processing time and memory space.

0 On the other hand, having a document tree structure helps in implementing incremental and
imperfect formatting because it is easy to apply these techniques to selected subtrees of a

52

logical representation and because the physical representation carries the information that is
necessary for resolving cross-references.

PHOVIA has proven to be a flexible data structure, especially as regards the handlins of
shared nodes The intrinsic symmetry between Parent and Child elements is perfectly sufted
thisÏ nelc? done^^ structures can be built out of it, though in SIGHT

^ language. Only editing subsystems have been imple
mented so far These include the PHOVIA database, the Core Editor and the text Ld
graphics specialists. A simple integrated text and graphics editor has been built using SIGHT

A concurrent editing of text and figures and illustrates thç
ability to have shared objects (a shared object has all its instantiations on the screen change
Simultaneously when one instantiation is edited). ^

To achieve its full potential SIGHT will need to integrate specialized uses of the basic
media Spreadsheets mathematical equations and 2-D animation are examples of these spe
cialized uses. Some of them have been studied in detail but await implementation.

Through SÍGHT we have attempted to create a sophisticated environment within which
office applications can Efc built and share a common database of information. The applicatioil

at we targeted more closely was an editor/formalter capable of handling all the expected
information types that can be present, in a document. This application still does not exist but

e trend is clear Full integration of text and graphics has just been achieved commercially
as evidenced by the Interleaf software and the Texet CAP workstations. This was the most
urgent integration to achieve. Mathematical equations will probably be next and someday
spreadsheets will be manipulated directly from within documents. SIGHT has shown us that
this IS not a faraway vision, it is possible today if the proper resources arc available.

Ì

I

\

53

References

[Ch82] Donald D. Chamberlin, James C. King, Donald R. Slulz, Stephen J. P. Todd and Bradford W. Wade (IBM Research Lab
oratory, San Jose), "Janus: An Interactive Document Formatier Based on Declarative Tags,” IBM System Journal, Voi. 21,
No. 3 (1982), pp. 250-271.

[Fu82] Richard Furuta, Jeffrey Scofield and Alan Shaw, "Document Formatting Systems: Survey, Concepts and Issues," Comput-
■Ù ing Surveys, Vol.l 4, No.3 (9/82), pp. 417-472.

[Gu84] Jtirg Gutknecht and Werner Winiger (Institut für Informatik, ETH-Zentrum, Zürich), "Andra: The Document Preparation
System of the Personal Workstation Lilith," Software-Practice and Experience, Voi. 14 (1984), pp. 73-100.

[Ha8l] M. Hammer, R. Ilson, T. Anderson, E. J. Gilbert, M. Good, B. Niamir, L. Rosenstein and S. Schoichet, "The Implementa
tion of Etude, an Integrated and Interactive Document Production System," in Proc. ACM SIGPLAN/SIGOA Conf. Text
Manipulation (Portland, Ore., June 8-10, 1981), ACM, NY, 1981,pp.l37-146.

[Ho82] W. Horak (Siemens AG, Zentrale Aufgaben Informationstechnik - ZTI, Munich, Germany), "E.xperimcntal Text and Fac
simile Integrated Workstation," Proc. of the I9S2 hit. Zurich Seminar on Digital Commun., pp.93-100.

[Ho84] W.Horak & G.Kroenert (Siemens AG, Corporate Laboratories for Information Technology, Munich, Germany) "An
Object-Oriented Office Document Architecture Model for Processing and Interchange of Documents," Second
ACM-SIGOA Conference on Office Information Systems, 25-27 June 1984, Toronto, Canada, pp. 152-160.

[Ib84] Document Composition Facility and Document Library Facility - General Information, G1120-9158, IBM General Products

Division, Tucson, Arizona 85744, January 1984.

[1180] Richard Ilson, "An Integrated Approach to Formatted Document Production," Master Thesis, Department of Electrical
Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139 (August 1980) 109 pp.

[KÌ84J Gary D Kimura and Alan C Shaw (University of Washington), "The Structure of Abstract Document Objects," Second
ACM-SIGOA Conference on Office Information Systems, Toronto, Canada, Vol.5,Nos.l-2 (25-27 June 1984), pp. 161-169.

[Kn79] Donald E.Knuth, TeX and METAFONT - New Directions in Typesettii^, American Mathematical Society & Digital Press

(1979).

[Me82] Norman Meyrowitz and Andrics van Dam (Brown University) "Interattive Editing Systems’ Computing Surveys, Vol.l4,
No.3 (September 1982), pp. 321-415.

[Os76] Joseph F. Ossanna (Bell Labs), NROFF/TROFF User’s Manual, Unix documentation (October 1976), 33 pages.

[Pr81] J. M. Prager and S. A. Borkin (IBM Cambridge Scientific Center), "Personal On-Line Integrated Text Editor" IBM
Cambridge Scientific Center, Cambridge, MA 02139 (September 1981), 12 pages.

[Re80] Brian K. Reid (Carnegie-Mellon University), "A High-Level Approich to Computer Document Formatting," Conference
Record of the 7th Annual ACM Symposium on Principles of Programming Languages, ACM (January 1980), pp. 24-31.

«. [Sc77] Mario Schkolnick (IBM Research Laboratory), "A Clustering Algorithm for Hierarchical Structures," .ACM Transactions
on Database Systems, Vol.2, No.l (March 1977), pp. 27-44.

^ [Se84] The Seybold Report on Publishing Systems, Voi. 14, No. 6, 19 November 1984.

[Sm83] Joan M. Smith (National Computing Centre, Manchester, England) "Te.xt Structuring," Data Processing, Vol.25, No.8

(October 1983), pp. 18-20.

54

[Th82] C. P. Thacker, E. M. McCreight, B. W. Lampson, R. F. Sproull and D. R. Boggs, 'Alto: A Personal Computer," in Com
puter Structures: Principles and Examples, edited by Daniel P. Siewiorek, C. Gordon Bell and Allen Newell, New York:
McGraw-HUl-, 1982, pp. 549-57Ì

[Un84] Utiilogic, SCRIBE Documeni Production System: User Mandai, Uhilogic Ltd., Pittsburgh, PA (April 1984), 264 pages.

A

li.*

&

	SIGHT - A Tool for Building Multi-Media Structured-Document Interactive Editing and Formatting Applications
	Recommended Citation

	tmp.1491518207.pdf.Tny4N

