
Molloy University Molloy University 

DigitalCommons@Molloy DigitalCommons@Molloy 

Faculty Works: MCS (1984-2023) Math and Computer Studies 

5-21-1985 

Application Interface Development Environment Application Interface Development Environment 

Robert F. Gordon Ph.D. 
Molloy College, rfgordon@molloy.edu 

Barry E. Willner 

Follow this and additional works at: https://digitalcommons.molloy.edu/mathcomp_fac 

 Part of the Graphics and Human Computer Interfaces Commons, Other Computer Sciences 

Commons, and the Partial Differential Equations Commons 

DigitalCommons@Molloy Feedback 

Recommended Citation Recommended Citation 
Gordon, Robert F. Ph.D. and Willner, Barry E., "Application Interface Development Environment" (1985). 
Faculty Works: MCS (1984-2023). 18. 
https://digitalcommons.molloy.edu/mathcomp_fac/18 

This Research Report is brought to you for free and open access by the Math and Computer Studies at 
DigitalCommons@Molloy. It has been accepted for inclusion in Faculty Works: MCS (1984-2023) by an authorized 
administrator of DigitalCommons@Molloy. For permissions, please contact the author(s) at the email addresses 
listed above. If there are no email addresses listed or for more information, please contact tochtera@molloy.edu. 

https://digitalcommons.molloy.edu/
https://digitalcommons.molloy.edu/mathcomp_fac
https://digitalcommons.molloy.edu/mcs
https://digitalcommons.molloy.edu/mathcomp_fac?utm_source=digitalcommons.molloy.edu%2Fmathcomp_fac%2F18&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/146?utm_source=digitalcommons.molloy.edu%2Fmathcomp_fac%2F18&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/152?utm_source=digitalcommons.molloy.edu%2Fmathcomp_fac%2F18&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/152?utm_source=digitalcommons.molloy.edu%2Fmathcomp_fac%2F18&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/120?utm_source=digitalcommons.molloy.edu%2Fmathcomp_fac%2F18&utm_medium=PDF&utm_campaign=PDFCoverPages
https://molloy.libwizard.com/f/dcfeedback
https://digitalcommons.molloy.edu/mathcomp_fac/18?utm_source=digitalcommons.molloy.edu%2Fmathcomp_fac%2F18&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:tochtera@molloy.edu


RC 11160 (#50246) 5/21/85 
Computer Science 20 pages

Research Report
Application Interface Development Environment

Robert F. Gordon 

Barry E. Wiliner

IBM Thomas J. Watson Research Center 

P.O. Box 218
Yorktown Heights, N. Y. 10598

LIMITED DISTRIBUTION NOTICE
Thi* report has bean submitted for publication outside of IBM and will probably ba co^gh^ 
accepted for publication. It has been issued as a Research Report for early dissemina^ 
contents. In view of the transfer of copyright to the outside publisher, its distribution out^ of IB 
prior to publication should ba limKad to pear communications and spécifié request Af^outtidd 
publication, requests should ba filled only by reprints or legally obtained copies of the article U.s-. 
payment of royalties).

IBM Research Division
San Jose • Yorktown • Zurich

i?
q;



Copies may be requested from:

IBM Thomas J. Watson Research Center. 
Distribution Services F-11 Stormytown 
Post Office Box 218 
Yorktown Heights, New York 10598



RC 11160 (#50246) 5/21/85 
Computer Science 20 pages

Applícatíon Interface Development Environment

Robert F. Gordon 

Barry E. Wiliner

IBM Thomas J. Watson Research Center 

P.O. Box 218

Yorktown Heights, N. Y. 10598

Abstract

The user of interactive systems must learn a different interface for each system he uses. Fur

thermore the designer of such systems has limited guidelines to create good user interfaces. We de

scribe an application interface development environment, AIDE, in which one can create and select 

multiple interfaces easily for a given application, and conversely one can create multiple applications 

with a given interface. This benefits the end-user by providing the possibility of familiar, even iden

tical, interfaces among wide ranges of products, and this helps the designer by supporting Human 

Factors testing of interfaces. We formulate a model of interactive systems in which the application 

and interface are decoupled and the components of the interface can be changed. We also provide 

tools for these components and a methodology to create and sélect interfaces.



1. Introduction

The new user of an interactive system must learn both the functionality of the system and the 

procedures to invoke its functions. For example, for an editor application the user must be aware of 

the editor’s capabilities such as to locate, delete, copy, move arbitrary text strings, and in addition he 

must know how to select the text strings and issue the commands. Often he can transfer his know

ledge of the functionality from one system to another; rarely can he do the same for the fonn of the 

interaction process. Time-consuming for novices and experienced users alike is the need to learn both 

the functionality of the application and the form of the user interface. It is especially frustrating for 

experienced users to know what is required (e.g. to identify the third paragraph to the system and 

issue a delete command), to know how to do it using another software package, but not to know the 

specification procedure for ihe present package.

From the designer’s point of view, creating good user interfaces is a difficult process that re

quires iterations of design and evaluation. However, once a system is developed, it is often too late 

to make major changes to the interface. Furthermore, interfaces that may be good for one user or 

one application may not be good for another. In response, designers may try to build flexibility into 

the interface, such as by using parameters or options tables, to adapt to the user and grow with bis 

expertise. However, in general the designer cannot foresee all the desired alternatives and provide 

enough flexibility to tailor the interface to all users’ needs.

The objective of the application interface development environment, AIDE, that we will de

scribe is to address the above needs of both the user and the designer. AIDE accomplishes this by 

providing an environment in which one can create and select multiple interfaces easily for a given 

application, and conversely one can create multiple applications with a given interface. This benefits 

the designer by supporting Human Factors testing of interfaces, as well as provides the capability to 

tailor the interface to the user. This further benefits the user by providing the possibility of familiar, 

even identical, interfaces among wide ranges of products. Additionally AIDE makes it easier to de

velop applications, because the application designer does not have to build the interface portion of 

his system.

Previous work to provide assistance to the interface designer falls broadly into three areas. 

One area of research involves simulating systems before they are built to improve the interface design 

through observation and modification of a model of thé system. Hanau and Lenorovitz [8] develop 

tools to create and present display snapshots and to vary the display based on user input and thus 

provide a visualization of the proposed system. Gould et al. [7] simulate the functions of a listening 

typewriter with a behind-the-scenes human typist, Kelley [12] simulates a calendar application with

1



I

the help of a human interpreter, and Good et al. [6] simulate an electronic mail application where a 

human operator augments the system’s capabilities. These experiments demonstrate the feasibility 

of simulating the application and capturing user input to shape the interface design early in the design

phase.

A second area of research to improve the design of user interfaces is work that describes 

formally the structure of human-computer interaction. Moran [14], Foley and Van Dam [3] and 

Nielsen [15] describe the user’s model of an interactive system in terms of a layered hierarchy from 
a task level through levels of semantics and syntax to a physical level. Each level reveals more details 

of the form to accomplish the function of the higher levels. Moran [14] suggests designing and eval

uating interfaces in a top-down approach by level with the important concept of being able to choose 

among varied implementations at each level. Foley and Van Dam [3] apply this framework to inter

active graphics where they view a comparable hierarchy for both the user input and the computer 

output. Nielsen [15] uses the hierarchy model to suggest design guidelines. Reisner [17] develops a 

grammar based on Backus-Naur Form to describe user actions and applies this representation to an

alyze alternative interface designs in terms of ease of use. Lindquist [13] formulates a language that 

describes the dialogue structure between user and computer and then demonstrates its applicability 

to evaluate interfaces. Foley and Wallace [4] and Jacob [11] apply state transition diagrams to 

specify user interfaces for interactive systems. Of further interest, the Military Message System de

scribed in [11] is designed so that the user interface is decoupled in this application and can be de

scribed separately from the application.

A third area of research is in developing tools to generate user interfaces. Heffler [10] de

scribes a system called MClS which allows the designer to create menu interfaces interactively, and 

Buxton et al. [1] present a user interface management system, MENULAY, which gives the designer 

the ability to create menu-driven interfaces graphically. Olsen and Dempsey [16] generate graphical 

user interfaces directly from a grammar describing the interface. The Cousin System [9] converts 

interface specifications established by filling in forms into a uniform user interface. Ciccarelli [2] 

formulates a model of the user interface in which the user manipulates a presentation data base con

sisting of the displayed information which in turn revises a data base of the application. He provides 

tools to build, edit and display the presentation data base and to support queries and updates to the

application data base.

In lilis paper we torimllate a model of Interacllve systems In which the appUcalion and interface 

are decoupled and the components of the interface can he changed. We also provide tools for these 

components and a methodology to create and select interfaces. The approach taken tn AIDE is 

three-leveled. First, we separate the application from the user interface, that is the function from the

2



r

form. In so doing, we provide sufficient information about the application to the interface to establish 

a communication pafh along which the interface can send user input to the application and receive 

application results. Second, we make the interface portion modular so that we can replace individual 

modules to produce different interfaces. Third, we provide presentation services tools for the com

mon elements needed for interactive interfaces. Tools can call upon other tools to translate user input 

to the application and application output to the user. We describe each of these aspects of AIDE in 

sections 2, 3 and 4.

2. Separation of Application front Interface

In this section, we describe the AIDE architecture of separating the application from the user 

interface. First, we define the user interface portion of a system independently of an application. 

We then show how to provide the application information necessary to link an interface to an appli

cation. We describe the interface code and the generic flow of an application in this architecture.

We think of the application as the tasks to be performed and the interface as the form of the 

user interaction. To accomplish the separation, we need to identify the elements that comprise the 

interface portion of a system. We specify an interface by identifying the form of the user input and 

the system output and the interaction areas where this takes place. Tlie form of the input consists 

of identifying how commands and arguments (objects) are given to the system. The form of the 

output consists of identifying how the system provides prompts, messages and results to the user. 

The "how" in the above statements requires specifying the medium, syntax and placement. An 

interface is then determined by the specification of these Interface Description Items:

1. Interaction Areas

a. Form of interaction areas. This establishes whether there is windowing for instance, 

if it is overlapping or tiled, fixed or moveable, its size and position, behavior of cursor, 

etc. (Interaction areas are not restricted to visual forms and include audio.)

b. Type of information to link to each area. Tlie type of information identifies what can 

be displayed (played for audio) in each area, such as a document or a list of com

mands.

Tlie items listed below define the form of the input and output and can vary by interaction

area.

2. Input

a. Form of object identification, including media to use. Tliis determines how the user 

will specify the objects, such as by pointing, circling or naming.

3



f

b. Form of command issuance, including media to use. Tliis determines how the user 

will invoke a command, such as by selecting from a menu, speaking a command name, 

direct manipulation of an object. This includes the form of interface objects (such as 

icons) used to invoke commands.

c. Order of specifying command and arguments, if not dependent on specific commands 

of the application. This allows the interface to set up a uniform procedure for entering 

commands if desired and if not, it allows the procedure to vary by command or com

mand groups.

d. Nesting of commands, if command independent. Tliis specifies whether commands 

must be completed before others are invoked.

3. Output

a. Form of system response, including media to use. The form of the response could be 

echoing, completion of input, voice acknowledgement.

b. Form of prompts and help messages.

c. Form of application output.

We denote an interface style as the specification of the above interface description items either 

fully or partially. The designer thereby determines what constitutes a style. A partial specification 

can result from not defining all items or defining an item incompletely. The designer can create sub

styles by completing the specification of a partially-specified interface. For example, the designer 

may determine an interface style to use highlighting for the form of system response and a sub-style 

to be reverse video. Further specification of the interface, such as media used (audio commands in

stead of keyboard input), can be provided at the sub-style level. We will use for the illustrative ex

amples in this paper a menu interface style in which objects are selected first from one menu and then 

commands from another menu. We will denote this interface style by style M. and we define style 

M in terms of the interface description items as follows:

1. Interaction Areas

a. Form of interaction areas - Display screen has four fixed windows: Application Dis

play Area (0,4)-(A,B), Command Menu Area (0.0)-(A/2,4), Object Menu Area 

(A/2,0)-(A,4), and Prompt Area (O.B)-(A,B + l). (Note that the uniu here are some 

length measure on a coordinate system with (0,0) being the upper left corner of the 

display screen.) The cursor can move freely between windows with no implied 

scrolling capability.

4



b. Type of information to link to each area - The Application Display Area, Command 

Menu Area, Object Menu Area, and Prompt Area are linked to the application’s out

put, commands, objects, and messages, respectively. (Information for this linkage and 

for the tokens to display is given by data files that will be described below.)

2. Input

a. Form of object identification - Identify object by selecting in Object Menu.

b. Form of command issuance - Invoke comniand by selectirig in Command Menu.

c. Order of specifying command and arguments - The object is selected first then the 

command.

d. Nesting of commands - A command must be completed before another is invoked.

3. Output

a. Form of system response - Selection of object and command will be highlighted in 

menu. Selection will be echoed in Prompt Area.

b. Form of prompts and help messages - Messages will appear in Prompt Area , if there 

is a selection error.

c. Form of application output - Application output will be in Application Display Area 

with the application specifying the relative placement

It is necessary to provide application infomiation to the interface in order to establish a link 

between the user specifications and the application. We identify the commands and objects of the 

application to the interface by a file which serves an analogous function to the schema in a data base 

management system. The file has two parts consisting of the Message File and the Context File. Tlie 

Message File is straight-forward: it contains the prompts and help messages for the application. 

These can be changed without affecting the application or interface code. An identifier is associated 

with each message in the file and used by the interface to select the appropriate message.

The Context File contains an equivalency table that specifies the user-issuable tokens for an 

interface and the corresponding identifications known by the application. Tlie table tells the interface 

how to translate the user’s input to the commands and objects of the application. A hierarchy of 

commands and objects is specified with the table. A given application has a different Context File 

for each interface style to identify the corresponding user representation of each application 

command/object in that interface style, such as the input tokens in a command line style, the function 

key numbers in a function key style, or the icon descriptions in an icon style. In addition, any 

command-dependent exceptions to the interface style are specified. The Context File grammar is not 

defined fully yet; however the following is an example to show the elements of a Context File for a

5



forecasting application using interface style M. Each line of the Context File that defines a command 

or object has the syntax of interface token followed by an arbitrary number of application identifiers. 

We specify the hierarchy of the application commands and objects for the given interface by inden

tation. Exceptions to the interface style are indicated by an preceding the interface identifier, 

which is then followed by a list of the exceptions to the style rules.

window 0 

commands 

sum 0 
update 4 2

project 1 

display

window 0.0 

numerically 2 

graphically 5

quit 3

& quit !0 >v
& update >D

window 1

objects

sales si 2

cost! cl 2

cost2 c2 2

Figure 1. Context File for Forecasting Application, Style M.

In this example, the Context File supplies the interface with the names of the menu elementó 

to display in two windows and their corresponding identification to the application. The Command 

Menu Area and the Object Menu Area of style M are thereby linked to the elements of window 0 and 

window 1, respectively. If the user selects "project” from the Command Menu Area, the interface

6



I

would send the message 1 to the application. This file also gives an example of the command hier

archy. Tlie selection of "display" in window 0 invokes sub-window 0.0 to allow the selection of the 

form of the display. E.xceptions to the interface style are specifii*d in the Context File. The above 
example provides for the following command-specific information: the "quit" command selection 

does not require an object selection; the "update" command requires data; the interface will ask for 

verification of the "quit" command before sending the message to the application. A command or 

object selection can send multiple messages. For example if the object "sales" is selected in window 

1, the application would receive a message telling it that the object identified by si was selected and 

to invoke the command given by command identifier 2 to display it numerically. Similarly, the se

lection of "update" will send a message to the application with command identifier 4 to update and 

command identifier 2 to display the result of the update.

The application programmer can provide in the Context File as much or as little information 

about the application’s data structure as he desires. The more information provided to the interface 

by the Context File, the more the interface can do for the application. At one extreme, if no object 

information is provided, all the interface may do is identify the relative position pointed to by the user 

in a window. If the application’s data structure is provided to the interface, the interface can tell the 

application what object has been selected.

Tlie interface description items listed on pages 3 and 4 are mapped to application-independent 

code. This code establishes an interface and uses the data files (Context and Message) to link this 

interface to a specific application. In addition, parameters such as window position and size can be 

supplied to the interface routines by an interface data file for the selected style. We call the 

application-independent code the Interface Routines, which consist of a Setup, Prompt, and Display 

routine. The Setup routine creates the interaction areas and links each area to the appropriate data 

based on the Context File. It uses the Context File to establish the correspondence between the 

interface tokens and the application. The Prompt routine interacts with the user to assemble user 

input. It translates the user input to the application based on the interface/application relationships 

established by the Setup routine. The Display routine provides the results of the application execution 

to the user. Interface description items la and lb determine the Setup routine; items 2a, 2b, 2c, 2d, 

3a, and 3b determine the Prompt routine; item 3c determines the Display routine.

There are multiple instances of each interface routine. A specific instance of each of the three 

routines. Setup. Prompt and Display, is selected based on the interface style desired. The following 

is an example of the interface routines for style M that requires object then command order specifi

cation. Tliese interface routines use the Context File shown in Figure I.

7



Setup Code Style M

Create Application Display Area 

Display Data in Application Display Area 

Create Command Area (Context File)

Display Data in Command Area 

Create Object Area (Context File)

Display Data in Object Area 

Create Prompt Area (Message File)

Display Data in Prompt Area 

return

Prompt Code Style M

Accept Object Identification from object area 

If error,
{ Display error__1 (Message File) in prompt area

goto Accept Object}

Respond Object Identification

Accept Command Identification from command area

If error, Display error__2 (Message File), goto Accept Command

Respond Contmand Identification
If Command requires data (specified by Context File)

{ Accept Data Identification
If error. Display error__3 (Message File), goto Accept Data

Respond Data Identification } 

return

Display Code Style M

Display Dau in application display area 

return

Figure 2. Interface Routines for Style M

g



I

Tlie Prompt Code in this example includes a conditional statement that depends on the com

mand information in the Context File. There can also be conditional statements based on object type 

information and interaction area that can be specified in the Context File.

Once we separate the above code that handles iisèr interaction from the application code, all 

applications consist of objects, functions to manipulate the objects, and the data files (Context File 

and Message File) which describe the commands, objects, and messages to the interface. The appli

cation flow consists of a call to the Setup routine, then iterations of call Prompt, execute selected 

command, call Display.

Call Setup 

Iterate:

Call Prompt 

Execute 

Call Display

Figure 3. Application Flow

Applications participate in this environment simply by including calls to the interface routines 

Setup, Prompt and Display and providing a Context and Message File. Participating applications 

contain no interface code; they receive their input from the Prompt routine and pass their output to 

the Display routine.

The Setup routine uses the Context File to establish the desired interaction areas and link the 

’ appropriate data. The Prompt routine prompts (using the Message File) the user to provide input,

assembles the resulting user input by the parsing mechanism established by the Setup routine, pro- 

vides an acknowledgement to the user or request to edit errors (using the Message File) and then 

sends the assembled command to the application. The application will include a case statement which 

executes the required application functions based on the assembled command. Then the application 

sends the result to the Display Routine which provides it to the user.

9



The Prompt routine can call upon Setup, if the user has issued a request to change the interface

style.

3. Modularity

In this section, we describe the flexibility that the AIDE architecture provides to change inter

faces.

One level of modularity is attained by tlie ability to select the appropriate interface routines 

based on style. Changing styles can then be accomplished by selecting a different instance of the 

interface routines.

As seen in Figure 2, the statements that comprise the interface routines are functional, such 

as Create Display Area, Accept Input or Display Output. Tlie specific method to perform the Create, 

Accept or Display and the form and medium of the Display Area, Input and Output are detennined 

by pointers to selectable code. The interface routines contain functional statements that are later 

expanded into code. Tlie actual code is set up in modules that are selected by pointers which provide 

the second level of modularity. Modules can interface with other modules to form a communicatíon 

path between the user and the application. Any module or group of modules along the communi

cation path can be replaced as long as the message interface at that point is preserved. As a result, 

the form of the message may change, provided that its meaning is preserved. A module may add 

meaning to the message, for example by correcting misspellings through a spelling checker or by in- 

terpreting voice input by a speech recognition module.

The modules along the communication path interpret and modify the message and send it on. 

The user’s input is a message that is passed along by the modules comprising the interface to the ap

plication. We call these messages incoming messages. The application then produces a result based 

on the incoming message and sends, the outgoing message to the user through the interface modules. 

Tlie application is analogous to an object in object programming [5]. It receives a message, selects 

the appropriate method to accomplish the task, and sends out a message.

Títere are cases when instead of passing the message on, a module will send an incoming mes
sage back toward the user or an outgoing message back toward the application. This may occur with

an incoming message, because;

1. An error is detected (such as unrecognized input, perhaps a misspelled command or unrecog

nized audio instruction).

10



«

2. Enough ¡nforniation is available to complete the request at the interface level (such as text edit), 

or
3. A preset dialogue loop has been established (such as the Interface style may require a verifica

tion query when the user selects "quit' ).

Similarly with an outgoing message from the application, a module will not send a request on to the 

end-user, if the interface routine can complete the request.

As an implementation method, a Code Dictionary provides the mechanism to select for each 

functional statement in the interface routines the desired code module or modules. An entry in the 

Code Dictionary consists of a style key and sub-style key (if necessary), the functional statement of 

the interface routine, pointers to the appropriate code modules, and parameters to input to modules. 

A given entry can have several pointers to select a path of modules. Furthermore, the Code Dic

tionary is multi-leveled..so that an entry in the Code Dictionary can point to another entry to incor

porate the other entry’s path.

4. Presentation Services Took

The interfaces for interactive systems require many of the same modules to display windows, 

point to objects, edit input. Since many interactivé interfaces have common elements, a tool kit ap

proach is appropriate for these common elements. In this section, we define the organization of the 

presentation services tools.

The main components of the tool kit are a window manager, dialogue managers, input/output 

interaction tools (handwriting recognition, speech digitization, speech recognition, speech synthesis), 

graphics package, multi-media editor. Tliese form the modules pointed to by the Code Dictionary. 

Thus, when an interface style calls for a visual display area, the Code Dictionary expands the Create 

functional statement in Setup by pointing to the window manager tool and providing it with the ap

propriate parameters. For an interface style receiving input from handwritten commands, the Code 

Dictionary expands the Accept functional statement in Prompt by pointing to the command line dia

log manager which in turn calls the handwriting recognition tool.

Figure 4 shows a diagram of the AIDE framework. The shaded boxes identify application- 

dependent code and data; the white boxes signify application-independent code. Tire application 

calls upon the interface routines whose functional statements are expanded into code by presentation 

services tools that are selected by the Code Dictionary. The instance of the interface routines and the 

specific tools selected depend on the interface style.

11



X

Message 
FUe :!

Figure 4. AIDE Framework

The tool kit is extensible to include new tools as developed, and there is also a certain amount 

of freedom in defining the tool kiL The tool kit is modular in that tools can be linked to other tools, 

and it is multi-leveled in that advanced tools call upon basic tools to accomplish portions of their task. 

An example of the modularity is the menu dialogue manager calling upon a speech recognition tool 

for input. For another interface style, it may call upon a keyboard tool or a handwriting recognition 

tool. An example of the hierarchy of tools is the menu dialogue manager using the window manager

to set up the menus.

12



ò

We include a brief description of Che main elements of the tool kit. The window manager 

maintains a data base of rectangular regions, associating with each an identification, position, priority 

and pointers to data. It provides an interface to data base management services to create and ma

nipulate a multi-window display of possibly overlapping documents.

Tlie dialogue managers provide pre-programmed interactions with the end-user. Tlie input 

portion of these interactions consists of command and argument specifications from the end-user, and 

the output portion consists of prompts and responses from the dialogue managers. The dialogue 

managers use the information supplied by the Context File to identify the input and translate it to the 

application. There is a dialogue manager tool or tools for each kind of interaction area, such as panels 

(input fields, soft keys, menus), command line, icons.

The input/output interaction tools provide the translation from different media to coded in

formation and vice versa. Examples of input/output interaction tools are handwriting recognition, 

speech digitization, speech recognition, speech synthesis.

The graphics tool provides the functions for interactive graphics. These include a number of 

prihiitive geometric objects which can be combined to form other objects. It also contains functions 

to manipulate these objects as well as any others provided to the system (for example, by drawing).

The editor tool provides a set of edit commands that can be applied to multi-ntedia documents. 

Editing can take place in any interaction area (application display areas, command line, menu, etc.) 

and is applied to both application objects and interface objects in a uniform way.

Tlie tools must be designed so that they can interface with each other to modify the form of the 

message along the communication path (see Figure 5). First, tools create the interaction areas and 

establish the application/interface relationships from the Context File as part of the Setup interface 

routine. Tools then use these relationships to translate messages from the user to the application. 

Illese tools comprise the Prompt interface routine for a given interface style. The translation con

verts the message from user syntax to application syntax, possibly amplifying the meaning along the 

way. The application then sends back a message through a series of tools that form the Display 

interface routine to translate (and possibly amplify) the message to the user. As stated above, any 

tool along the path may send back a message to its sender, if the tool detects an error or has enough 

information to respond itself to the message.

Î .

13



Application Interface

Figure 5. Communicaiion Path

5. Creating and Changing Interfa<xs and Applications

The AIDE framework decouples the application from the interface. In this section, we discuss 

how to create an interface in a given style using the AIDE framework and show how to change the 

interface and the application independently.

AIDE allows the interface designer to experiment with interfaces for a given application by 

providing the capability to select from existing interface styles as well as to create new interface

14



à

i

styles. In both cases, the Context File must be constructed for that interface style and specific ap

plication.

To create a new interface style, the designer specifies the interface description items shown on 

pages 3 and 4 to describe the Interaction Areas. Input form and Output form. A generator program 

would then create the interface rotitines from these specifications and provide the pointers and pa

rameters in the Code Dictionary to select the appropriate code modtiles and provide the necessary 

data. In our example, the menu-style interface M wotild be generated from the specification of the 

interface description items for style M on pages 4 and 5. The generator program would create the 

interface routines of Figure 2 and the entries in the Code Dictionary to select the presentation ser

vices tools. Sub-styles can be created by specifying in the interface description items, for example, 

the form of highlighting to be reverse video or the form of menu selection to be voice input Similarly, 

the designer can create a direct icon manipulation style or a command line style by completing the 

interface description items for those styles.

To choose from existing interface styles, the designer selects a style key to identify the appro

priate Setup, Prompt, and Display routines, and the routines’ functional statements are then expanded 

into code by the Code Dictionary using the style and sub-style keys provided. For example, providing 

the key for style M would result in the selection of the interface routines in Figure 2. The functional 

statements of these routines, such as "Create Application Display Area" and "Accept Object Iden

tification , would be expanded into code through Code Dictionary pointers, in this case to the win

dow, manager and to the menu dialogue manager, respectively. Sub-style keys allow the designer to 

fine-tune the interface by specifying the tools to be selected by the Code Dictionary. As a further 

example, if the designer wanted to change interfaces to a command line style C, in which the end-user 

enters a command followed by an object and possibly additional data in a command area, the designer 

would provide a key to select a Prompt routine such as the following:

r

15



í.*

Prompt Code Style C

Accept Command Identification from command area

If error. Display error__2 (Message File), goto Accept Command

Respond Command Identification

Accept Object Identification from command area

If error. Display error__1 (Message File), goto Accept Object

Respond Object Identification

If Command requires data (specified by Context File)

{ Accept Data Identification from command area

If error. Display error__3 (Message File), goto Accept Data

Respond Data Identification } 

return

Depending on the sub-style selected, the command area could be the keyboard, audio, tablet

The interface style or sub-style can be changed at one level by replacing a presentation tool 

module (handwriting recognition for audio recognition), at a higher level by replacing the interface 

routines (direct icon manipulation for menu selection). Thus what appears to be a major change to 

the user is accomplished by a change of pointers to the presentation services modules or by a change 

of pointers to the interface routines themselves and with no change to the application.

On the other hand, we can change the application and keep the same interface. The designer 

accomplishes this by modifying the Context File associated with that interface style to include the 

new application’s tokens and by providing the new application’s messages in the Message File. As a 

simplified example, we changé applications from the forecasting application using interface style M 

to a mail application in style M by modifying the Context File of Figure 1 to the Context File shown 

in Figure 6.

-t

■t

16



»

window 0 

commands 

re.ad 0 

write 4 0 

send 2 

delete 1 

quit 3

& quit !0 >V 

& write >D 

& send >D

window 1 

objects

notel nl 0 

note2 n2 0

Figure 6. Context File for Mail Application, Style M.

The application programmer would not have to make any change to his program or to the 

interface routines to inherit the interface.

6. Conclusions and Future Work

We have shown how the AIDE framework provides the ability to change user interfaces and 

applications independently of each other to benefit both the end-user and the designer. We described 

how to generate the user interface automatically, either directly from the specification of the interface 

description items or by the selection of pre-established routines by a style key. We think that this 

approach will strengthen the interface design procedure and improve the usability of interactive sys

tems.

17



h

, Future work on AIDE will involve developing grammars to 1) specify the interface description 

items to the program that generates the interface code, 2) describe the elements of the Context File 

to the interface routines, and 3) construct the messages between the application and the interface 

routines.

Acknowledgement

Tlie authors would like to thank S. J. Boies, J. M. Carroll, C. L. Cesar, G. B. Leeman, 

R. L. Mack, M. A. Martin, P. Reisner, and J. R. Rhyne for their helpful comments and suggestions; 

G. B. Leeman for suggesting we investigate user interfaces in the first place and for his many 

thoughtful comments which helped improve this report; J. M. Carroll for providing insight into mod

elling human-computer dialogue; and M. A. Martin for valuable discussions on object-oriented pro-^ 

gramming.

18



REFERENCES

J

i

1. Buxton, W., Lamb, M.R., Sherman, D. and Smith, K.C. Towards a Comprehensive User Inter

face Management System. Computer Graphics, 17, 3, July 1983, 35-42.

2. Ciccarelli, E.C. Presentation Based User Interfaces. MIT/AITR 794, Massachusetts Institute 

of Technology, Aug. 1984.

3. Foley, J.D. and Van Dam, A. Fundamentals of Interactive Computer Graphics. Addison- 

Wesley, Reading, MA, 1982.

4. Foley, J.D. and Wallace, V.L. The Art of Natural Graphic Man-Machine Conversation. Pro

ceedings of the IEEE, 62, 1974, 462-471.

5. Goldberg, A. and Robson, D. SmaIltaIk-80 The Language and its Implementation. Addison- 

Wesley, Reading, MA, 1983.

6. Good, M.D., Whiteside, J.A., Wixon, D.R., and Jones, S.J. Building a User-Derived Interface. 

Communications of the ACM, 27, 10, Oct. 1984, 1032-1043.

7. Gould, J.D., Conti, J. and Hovanyecz, T. Composing Letters with a Simulated Listening Type

writer. Communications of the ACM, 26, 4, Apr. 1983, 295-308.

8. Hanau, P.R. and Lenorovitz, D.R. Prototyping and Simulation Tools for User/Computer Di

alogue Design. Computer Graphics. 14,3, July 1980, 271-278.

9. Hayes, P. Personal Communication, Mar. 11, 1985.

10. Heffler, M.J. Description of a Menu Creation and Interpretation System. Software - Practice 

and Experience, 12, 1982, 269-281.

11. Jacob, R.J.K. Using Formal Specifications in the Design of a Human-Computer Interface. 

Communications of the ACM, 26, 4, Apr. 1983, 259-264.

12. Kelley, J.F. An Iterative Design Methodology for User-Friendly Natural Language Office In

formation Applications. ACM Transactions Office Information Systems, 2, 1, Jan. 1984, 26-41.

13. Lindquist, T.E. Assessing the Usability of Human-Computer Interfaces. IEEE Software, 2, 1, 

Jan. 1985, 74-82.

I 14. Moran, T.P. The Command Language Grammar; a representation for the user interface of

interactive computer systems. Int. J. Man-Machine Studies, 15, 1981, 3-50.

f 15. Nielsen, J. A Virtual Protocol Model for Computer-Human Interaction. DAIMI PB-178,

Aarhus University, Sep. 1984.

16. Olsen, D.R. and Dempsey, E.P. SYNGRAPH; A Graphical User Interface Generator. Computer 

Graphics, 17, 3, July 1983, 43-50.



I

17. Reisner, P. Formal Grammar and Human Factors Design of an Interactive Graphics System. 

IEEE Trans, on Software Engineering, SE-7, 2, Mar. 1981, 229-240.

L

'*


	Application Interface Development Environment
	Recommended Citation

	tmp.1491518002.pdf.iJRsf

