
Molloy University Molloy University 

DigitalCommons@Molloy DigitalCommons@Molloy 

Faculty Works: MCS (1984-2023) Math and Computer Studies 

8-17-1990 

RESQME and Stand-Alone Simulation on a Workstation RESQME and Stand-Alone Simulation on a Workstation 

Robert F. Gordon Ph.D. 
Molloy College, rfgordon@molloy.edu 

Paul G. Loewner 

G J. Burkland 

J-C Chen 

Edward A. MacNair 

Follow this and additional works at: https://digitalcommons.molloy.edu/mathcomp_fac 

 Part of the Graphics and Human Computer Interfaces Commons, Other Computer Sciences 

Commons, and the Partial Differential Equations Commons 

DigitalCommons@Molloy Feedback 

Recommended Citation Recommended Citation 
Gordon, Robert F. Ph.D.; Loewner, Paul G.; Burkland, G J.; Chen, J-C; and MacNair, Edward A., "RESQME 
and Stand-Alone Simulation on a Workstation" (1990). Faculty Works: MCS (1984-2023). 19. 
https://digitalcommons.molloy.edu/mathcomp_fac/19 

This Research Report is brought to you for free and open access by the Math and Computer Studies at 
DigitalCommons@Molloy. It has been accepted for inclusion in Faculty Works: MCS (1984-2023) by an authorized 
administrator of DigitalCommons@Molloy. For permissions, please contact the author(s) at the email addresses 
listed above. If there are no email addresses listed or for more information, please contact tochtera@molloy.edu. 

https://digitalcommons.molloy.edu/
https://digitalcommons.molloy.edu/mathcomp_fac
https://digitalcommons.molloy.edu/mcs
https://digitalcommons.molloy.edu/mathcomp_fac?utm_source=digitalcommons.molloy.edu%2Fmathcomp_fac%2F19&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/146?utm_source=digitalcommons.molloy.edu%2Fmathcomp_fac%2F19&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/152?utm_source=digitalcommons.molloy.edu%2Fmathcomp_fac%2F19&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/152?utm_source=digitalcommons.molloy.edu%2Fmathcomp_fac%2F19&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/120?utm_source=digitalcommons.molloy.edu%2Fmathcomp_fac%2F19&utm_medium=PDF&utm_campaign=PDFCoverPages
https://molloy.libwizard.com/f/dcfeedback
https://digitalcommons.molloy.edu/mathcomp_fac/19?utm_source=digitalcommons.molloy.edu%2Fmathcomp_fac%2F19&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:tochtera@molloy.edu


RC 16037 (#71232) 8/17/90 
Computer Science 7 pages

Research Report
RESQME and Stand-Alone Simulation on a 
Workstation

G. J. Burkiand, J-C. Chen, R. F. Gordon, 
P. G. Loewner and E. A. MacNair

IBM Research Division
T. J. Watson Research Center
Yorktown Heights, NY 10598

NOTICE

Tills report will be disttibuted outside of IBM up to one year after the IBM publication date.

Research Division
Almadén • T.J. Watson • Tokyo • Zurich



RESQME and Stand-Alone Simulation on a Workstation

G.J. Burkland, J-C. Chen, R.F. Gordon,
P.G. Loewner, and E.A. MacNair 

IBM Research Division
IBM Thomas J. Watson Research Center, U.S.A.

Yorktown Heights, New York 10598
BURKLAN, JCCHEN, RGORDON, LOEWNER. MACNAIR at YKTVMH 

TL 863-7503, 7751, 7170, 7564, 7561

ABSTRACT
The Research Queueing Package Modeling Environment (RESQME) provides a graphical envi
ronment for constructing and solving extended queueing network models of manufacturing systems, 
for plotting graphs of results and for viewdng animations of models. The modeling environment 
can be run entirely on a workstation or optionally can execute large simulations on a host system 
using cooperative processing.
In this paper we give a brief introduction to RESQME and to the RESQ modeling elements. We 
demonstrate how to use the package by constructing a simple model of part of a manufacturing line 
and solve this model to produce charts of performance measures and an animation which shows 
how the jobs flow through the system.
By having the simulation available for use on the workstation and cooperatively on the host, 
RESQME provides a unique tool for understanding the performance of manufacturing systems. 
A user can do most of the model debugging locally on the workstation and make short püot runs 
to get a feeling for the amount of resources necessary to make more realistic experiments on the 

• host. Then long runs which investigate large parts of the parameter space can be done cooperatively 
on the host.
Whether the model is solved on the workstation or on the hosMhe graphics environment provides 
the same user interface to all of the underlying files. The processor where the model is solved is 
transparent to the user. In aU cases, the user has easy access to plots of results and to the animation 
of the model diagram.



INTRODUCTION
The RESearch Queueing Package Modeling Environment (RESQME) provides a graphical inter
face for constructing and solving extended queueing network models of manufacturing systems, 
computer systems, communication networks, and other contention type systems. In this paper we 
give a brief description of RESQME and the RESQ modeling elements that are used in building 
the models. Additional information on RESQME and RESQ can be formd in Aggarwal et. al. 
1989, Chow et. al. 1985, Gordon et. al. 1986, 1987, 1990b, Kurose et. al. 1986, MacNair and Sauer 
1985, and Sauer et. al. 1980, 1982, 1986. A simple example is presented to illustrate how to use the 
modeling environment to construct and solve a model. The package allows models to be solved 
either on the workstation or on a host. The choice of where to solve the model is left up to the 
user at run time and requires nothing more of the user than to select the desired processor in an 
options window. The user can progress from one processor to another as his or her requirements 
from the model changes. After the model is solved, the results are available on the workstation so 
that the performance measures can be quickly viewed graphically and an animation of the model 
can be displayed.

THE GRAPHICAL ENVIRONMENT AND MODELING ELEMENTS
RESQME provides a graphical environment for creating, editing, evaluating, and analyzing models. 
It is menu driven with three main tasks:
1. Create/Edit
2. Evaluate
3. Output Analysis
The Create/Edit task enables the user to buüd a new model or change an existing model. Param
eters and other symbolic names can be defined while creating the model. Icons, representing vari
ous modeling elements, can be selected from a palette and linked together to define the flow of jobs 
through the model. As these icons are placed in the graphics area, their textual attributes are 
specified in pop-up windows. The simulation run length, a confidence interval method, and the 
desired accuracy of the results are also specified. Additional information about the graphical envi
ronment is provided to the user through on-line, context-sensitive help windows and dynamic tu
torials.
-The Evaluate task is used to assign values to parameters and to submit multiple simulation runs 
with different sets of parameter values. The user can choose to evaluate the model locally on the 
workstation or on a host system by selecting the appropriate switch. When the solution is com
pleted, the results consisting of all performance measure means and selected distributions are read 
into memory for immediate access.
The Output Analysis task allows the user to select the performance measures to plot, to change the 
way he or she views the data, to plot a graph or display a table of niimbers, and to view an ani
mation. This is all provided firom the same visual representation of the model without requiring 
any additional work firom the user. Performance measure graphs and tables are provided by 
pointing to the desired object on the model diagram and then selecting from the resulting per
formance measures for that object, whether the object is a chain, a node, a queue, or the whole 
model. Animation is provided by simply selecting the animation menu item.
The modeling elements of RESQ include a rich set of primitives for constructing realistic models 
of complicated systems. Service centers can be defined with one or more servers, various queueing 
disciplines for scheduling jobs, to support different types of jobs with their associated service time 
distributions and priority levels, and the servers can serve at specified service rates. An open model 
which has jobs that enter and leave can have sources and sinks representing the various entry and 
exit points. Resources that have a finite number of elements that have to be allocated to jobs, like 
buffers, operators, robots, positions on a conveyor mechanism, can be represented by passive 
queues. A continuous flow manufacturing system can be implemented with wait nodes and passive 
queues. Variables can be assigned values at set nodes to, for example, distinguish jobs at different 
stages of a multi-loop process. Jobs can be split into multiple copies which are either related or 
unrelated, as may be required to handle batching operations. The related jobs will be reunited at

- 1 -



some point in the model. The model can be constructed hierarchically using submodels. The 
submodels can contain parameters so that different copies of the submodels can be assigned differ
ent values for the parameters. Information can be carried by jobs, by system, global and local 
variables and by parameters, so that decisions in a CIM environment, based on activities at different 
parts of the manufacturing line, can be simulated.

AN EXAMPLE
The manufacturing model discussed in this section is taken from the one discussed in Gordon et. 
al. 1990a. The model is hierarchically structured. The top level is shown in Figure 1. Although 
this is a simpler system than is typically used in the field, it contains many of the modeling elements 
found in actual models and thus will provide a useful vehicle for explaining some of the modeling 
elements of RESQ. It might be a portion of a more complicated manufacturing line that is in an 
early stage of design or can be separated from the full line to examine in detail and so may be an
alyzed on the stand-alone workstation.

Figure I. RESQME screen with model

Two types of parts are to be assembled at the assembly process. The assembled parts go to a 
robotic workcell, undergo a baking operation, go to another robotic workcell, and then to a testing 
station. Those parts that fail the test imdergo some rework and are routed back to the first robotic 
workcell. The parts that pass the test leave the model at the SINK. The decision as to which path 
is taken is specified in an attribute pop-up window, using conditional or probability expressions. 
Suppose it should go to SINK with probability .90, the portion in the pop-up window that de
scribes this is as follows:

tester - > SINK ; .90 
tester - > rework; .10

-2-



The model is constructed hierarchically, with submodels representing the processing that takes place 
at the assembly, workcells, and baking operations. The flow of parts through the model is shown 
in Figure 1 by the solid lines.
The two types of parts enter at the nodes labeled parti and parti. These nodes are source nodes 
which create parts according to a specified interarrival time distribution. Each part then goes to a 
set node {set! and set! in the model diagram). Set nodes are used to assign values to variables. 
At set! and seti, the parts are assigned a part type. From this point, each part flows into the as
sembly process.
The assembly process is represented by an invocation of a submodel, called ASSEMBLE, which 
merges two types of parts. The submodel has parameters for the number of each part type to be 
merged and each part's identification number. Figure 2 displays the paths that parts follow for the 
assembly process. The dotted lines in the figure represent the flow of tokens from or to the passive 
queue. A submodel has a primary entry point and a primary exit point; the node labeled difn is the 
primary entry point for the ASSEMBLE submodel. Din is a dummy node, which is used here to 
provide a convenient place at which jobs can make routing decisions. One type of part follows the 
upper path, and the second type follows the lower path. The set nodes setaddl and setaddl corrnt 
the number of each part in the next group of parts to be merged. The remaining processing in the 
submodel provides a place for jobs to wait until all of the parts for the next assembly are ready to 
be put together.

ASSEMBLE'submodel

•
pqmerge2

Figure 2. ASSEMBLE submodel

The type of synchronization required by this submodel is typically accomplished in RESQ by using 
a passive queue. A passive queue normally has a pool of a finite number of elements called tokens 
to be allocated to jobs. The jobs wait at an allocate node to be allocated the requested number of 
tokens from the pool. The jobs then hold onto the tokens while they visit other nodes until they 
eventually release the tokens back to the pool or destroy them. New tokens may also be created 
to increase the number of tokens available. In our model, after incrementing the count of the 
number of parts for the next assembly, each part visits a create node {crarrl or crarrl), where it 
creates a token indicating that another part is ready to be assembled. If the part is the first part of 
its type in a particular assembly, the part goes to a set node, setbtchl or setbtckl, where the as
sembly number is incremented. If the first part of the other type for the same assembly has not

-3-



yet arrived, the part then waits at an allocate node, mergept, until all parts for that assembly have 
arrived. If the part is not the first part in an assembly, it is sent to a sink node to leave the model. 
(Thus, most of the parts will flow from crarri or crarr2 to SINK. The corresponding branches 
fi'om setbtchl or setbtchl to SINK are used only for the first part of the later part type in each as
sembly.) Only the first part in every assembly will leave the submodel and, when it leaves the 
submodel, it represents the entire assembly. The mergept node is a special type of node known as 
an AND allocate node. AND allocate nodes belong to multiple passive queues and are represented 
in RESQME by multiple icons with the same name. The first part in each assembly waits at the 
AND allocate node until all parts in an assembly have arrived. One token for each part in the as
sembly is allocated to the part and then destroyed at the destroy nodes desi and des2. The assem
bled job then leaves the ASSEMBLE submodel and goes to the first workcell.
The icons workcelll and workcell2 are invocations of the ROBOCELL submodel, which is based 
on a paper by Medeiros and Sadowski 1983. The flow of jobs is depicted in Figure 3. There is 
an input staging area where the part is oriented, a machine to process the part, and an output 
staging area where the processed part waits imtil it can leave the submodel. There is also a robot 
which moves the part from the input staging area to the machine, stays there with the part, and then 
moves it to an output staging area. A passive queue is used to represent the sta^g area, in which 
the parts are oriented one at a time. The robot is also modeled as a passive queue. An oriented 
part waits at the aro allocate node imtil the robot is available. The robot then picks up the oriented 
part, releases the orientation station, and stays with the part as it goes to the process invocation of 
the JOBPROC submodel. Here we see an example of a submodel nested within a submodel. After 
the part has completed the processing step, the robot puts it down at the output staging area if it 
is free. If the output staging area is occupied, the robot waits with the part. When the robot puts 
the part at the output staging area, it becomes firee to pick up the next oriented part. The part at 
the output staging area takes some time to be removed and then waits if the buffer at the bake 
operation is full. By checking on the availability of buffer space, we are modeling the "pull” 
method of moving parts through the system; the part leaves the output staging area only when a 
buffer is available to hold it. This is an example of one invocation requiring information about 
another invocation; such information is made available here through a global variable.

ROBOCELL submodel

.*113 . .'CZU ■. «(ZD-
■■.to9.oreol-- . ’ robot, •. .•,to9eor*o2 ■.

©’-Jlhis—(~l‘ ']HVA- "•MO- V* n 1¡^. ’ -----ÎK!}'----V* "HO* "O' V~K£)
osi setos orient oro pickup rs1 setor process os2 putoown rro remvs2 woiVorout rs2

Figure 3. ROBOCELL submodel

The JOBPROC submodel is a simple process step. If the machine is up, the parts undergo proc
essing and leave. There is a special controlling job which represents failures of the machine which 
processes the parts. When the controlling job is at the up node, the machine is up and running. 
When it goes to the down node, it gains control of the process machine, and any part in process (i.e..

-4-



at the server of the process queue) is interrupted and re-queued for service until the machine is re
paired; this is illustrated in Figure 4 on page 5.
-From workceill the parts flow to the bake operation. The bake invocation is a copy of a submodel 
{OVEN) which accumulates batches of parts until there are enough to fill the bake oven. Then all 

: parts in a batch are baked simultaneously. Figure 5 shows how the batching is accomplished. 
Parts in each batch are coimted. The last part in each batch causes all parts in the batch to be re
leased to the process step which accomplishes the baking. This is implemented with a passive queue 
by holding all parts in a batch at the batchwait allocate node untü tìie last part creates enou^ to
kens at startbatch for all parts in the batch to progress. When parts finish the process step, they 
check the buffer availability at workcelü. When a buffer is free at workceU2, the part goes to this 
second invocation of the ROBOCELL submodel.

JOBPROC submodel

©HlKIMô)

process

]0
updown

Figure 4. JOBPROC submodel

.'CD-.
cycletimeq

OVEN submodel

■ CH:,
botchp.q

cyclestQrt setoQ

reset

batchwait

startbatch

—-3C'
uesbotch process

-Í7- HIHa)
aitr cycieena setar

- 5 -

Figure 5. OVEN submodel



STAND-ALONE OR COOPERATIVE PROCESSING FOR SOLUTION
The user has the choice of solving the model either on the workstation or in a cooperative proc
essing mode on a host. The user can freely switch between these processors without having to 
change the model. Having the simulation available on the workstation is very convenient for 
making short pilot runs and for debugging the model. After the model is working correctly, the 
results from the pilot runs can be used to estimate the length of longer runs. When final exper
iments are to be performed, they can be run on the host.
Independent of where the model is solved, all of the performances measures are available on the 
workstation for rapidly producing graphs. Figure 6 shows some sample results for the model de
scribed in the previous section. The QL & QT bars are displayed with different colors.

- ,

robotq

JilO'—V*—0‘
osi setoo orient oro pickup rsl setor process

ROBOCELL submoael

.-CD-.
stogeareo2 *

-------ÜK )' V' jlK3— "O*

os2 putdown rro remvs2 woitforbut rs2

Figure 6. Output Analysis: display of performance statistics

After the simulation is finished, the analyst can also view the animation of the model diagram. This 
will show jobs moving between nodes and tokens being allocated to and released from jobs. See 
Aggarwal et. al. 1989 for more information related to animation.

SUMMARY
RESQME provides ä graphical environment for constructing, solving, and analyzing extended 
queueing network models. It supports a rich underlying modeling paradigm and provides a single 
integrated graphical interface for use throughout the modeling lifecycle. The stand-alone version 
provides additional support for obtaining quick solutions and for debugging.

ACKNOWLEDGEMENT
The authors wish to thank Ben Antanaitis, Howard Jachter, Jack Servier, Daniel Souday and Peter 
Welch for their many suggestions which helped improve the RESQME package. We are also in
debted to Jim Kurose and Kurt Gordon for their intimate involvement with RESQME for many 
years. We thank Anil Aggarwal, Al Blum, Diana Coles and Geoff Parker for their work in imple
menting RESQME. We would also like to thank our users for their ideas and feedback that we 
tried to incorporate in the RESQME interface.

REFERENCES

*1

-6-



Aggarwal, A., K. J. Gordon, J. F. Kurose, R. F. Gordon, and E. A. MacNair (1989). Animating 
Simulations in RESQME. Proceedings of the 1989 Winter Simulation Conference, E. A. 
MacNair, K. J. Musselman, and P. Heidelberger (Eds.), IEEE Press, Piscataway, NJ, 612-620.

Chow, W.-M., MacNair, E. A. and Sauer, C. H. (1985). Analysis of Manufacturing Systems by 
the Research Queueing Package. IBM Journal of Research and Development 29, 330-342.

Gordon, K. J., Kurose, J. F., Gordon, R. F. and MacNair, E. A. (1990a). An Extensible Visual 
Environment for Construction and Analysis of Hierarchically-Structured Models of Resource 
Contention Systems. Accepted by Management Science.

Gordon, R. F., MacNair, E. A., Welch, P. D., Gordon, K. J. and Kurose, J. F. (1986). Examples 
of Using the RESearch Queueing Package Modeling Environment (RESQME). Proceedings of 
the 1986 Winter Simulation Conference, Washington, D.C., 494-503.

Gordon, R. F., MacNair, E. A., Gordon, K. J. and Kurose, J. F. (1987). A Visual Programming 
Approach to Manufacturing Modeling. Proceedings of the 1987 Winter Simulation Conference, 
A. Thesen, H. Grant, and W. D. Kelton (Eds.), IEEE Press, Piscataway, NJ, 465-471.

Gordon, R. F., Loewner, P. G., MacNair, E. A., Gordon, K. J. and Kurose, J. F. (1990b). The 
RESearch Queueing Package Modeling Environment (RESQME) OS/2 Guide for Version 3.1. 
IBM Research Report, Yorktown Heights, New York.

Kurose, J. F., Gordon, K. J., Gordon, R. F., MacNair, E. A. and Welch, P. D. (1986). A 
Graphics-Oriented Modeler's Workstation Environment for the RESearch Queueing Package 
(RESQ). 1986 Proceedings Fall Joint Computer Conference, Dallas, 719-728.

MacNair, E. A. and Sauer, C. H. (1985). Elements of Practical Performance Modeling, Prentice- 
Hall, Englewood Cliffs, N.J.

Medeiros, D. J. and R. P. Sadowski (1983). Simulation of Robotic Manufacturing Cells: A Mod
ular Approach. Simulation, AQ,

Sauer C., MacNair, E., Salza, S. (1980). A Language for Extended Queueing Network Models. 
IBM Journal of Research and Development 24, 747-755.

Sauer, C. H., MacNair, E. A. and Kurose, J. F. (1982). The Research Queueing Package Version 
2: Introduction and Examples. IBM Research Report RA-138, Yorktown Heights, New York.

Sauer, C. H., Blum, A. M., Loewner, P. G., MacNair, E. A. and Kurose, J. F. (1986). The Re
search Queueing Package Version 2: CMS Reference Manual. IBM Research Report RA-139, 
Yorktown Heights, New York.

- 7 -


	RESQME and Stand-Alone Simulation on a Workstation
	Recommended Citation

	tmp.1491517784.pdf.wZEKW

