
Molloy University Molloy University 

DigitalCommons@Molloy DigitalCommons@Molloy 

Faculty Works: CSD (2005-2023) Communication Sciences and Disorders 

7-2005 

Neurophysiological Indexes of Speech Processing Deficits in Neurophysiological Indexes of Speech Processing Deficits in 

Children with Specific Language Impairment Children with Specific Language Impairment 

Hia Datta Ph.D. 
Molloy College, hdatta@molloy.edu 

Valerie L. Shafer 

Mara L. Morr 

Diane Kurtzberg 

Richard G. Schwartz 

Follow this and additional works at: https://digitalcommons.molloy.edu/csd_fac 

 Part of the Speech Pathology and Audiology Commons 

DigitalCommons@Molloy Feedback 

Recommended Citation Recommended Citation 
Datta, Hia Ph.D.; Shafer, Valerie L.; Morr, Mara L.; Kurtzberg, Diane; and Schwartz, Richard G., 
"Neurophysiological Indexes of Speech Processing Deficits in Children with Specific Language 
Impairment" (2005). Faculty Works: CSD (2005-2023). 2. 
https://digitalcommons.molloy.edu/csd_fac/2 

This Peer-Reviewed Article is brought to you for free and open access by the Communication Sciences and 
Disorders at DigitalCommons@Molloy. It has been accepted for inclusion in Faculty Works: CSD (2005-2023) by an 
authorized administrator of DigitalCommons@Molloy. For permissions, please contact the author(s) at the email 
addresses listed above. If there are no email addresses listed or for more information, please contact 
tochtera@molloy.edu. 

https://digitalcommons.molloy.edu/
https://digitalcommons.molloy.edu/csd_fac
https://digitalcommons.molloy.edu/csd
https://digitalcommons.molloy.edu/csd_fac?utm_source=digitalcommons.molloy.edu%2Fcsd_fac%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1035?utm_source=digitalcommons.molloy.edu%2Fcsd_fac%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
https://molloy.libwizard.com/f/dcfeedback
https://digitalcommons.molloy.edu/csd_fac/2?utm_source=digitalcommons.molloy.edu%2Fcsd_fac%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:tochtera@molloy.edu


Neurophysiological Indexes of Speech Processing
Deficits in Children with Specific

Language Impairment

Valerie L. Shafer1, Mara L. Morr1, Hia Datta1,
Diane Kurtzberg2, and Richard G. Schwartz1

Abstract

& We used neurophysiological and behavioral measures to
examine whether children with specific language impairment
(SLI) have deficits in automatic processing of brief, phoneti-
cally similar vowels, and whether attention plays a role in such
deficits. The neurophysiological measure mismatch negativity
(MMN) was used as an index of discrimination in two tasks;
one in which children ignored the auditory stimuli and
watched a silent video and a second in which they attended
to the auditory modality. Children with SLI showed good
behavioral discrimination, but significantly poorer behavioral

identification of the brief vowels than the children with typical
language development (TLD). For the TLD children, two
neurophysiological measures (MMN and a later negativity, LN)
indexed discrimination of the vowels in both tasks. In contrast,
only the LN was elicited in either task for the SLI group. We did
not see a direct correspondence between the absence of
MMN and poor behavioral performance in the children with
SLI. This pattern of findings indicates that children with SLI
have speech perception deficiencies, although the underlying
cause may vary. &

INTRODUCTION

Acquiring a first language for most children is relatively
effortless. However, for some children (5–10%), lan-
guage abilities lag far behind their peers, particularly in
phonological and morphophonological production
(e.g., Bishop, 1997). Children with these language de-
lays, but no evidence of frank neurological, sensorimo-
tor, or nonverbal cognitive deficits are called specific
language impaired (SLI). One possible cause of SLI is
atypical development of speech perception. In a devel-
opmental model of word recognition, Jusczyk (1997)
proposed that infants weight critical features of speech
sounds that are necessary for making semantic distinc-
tions and that these weightings result from the auto-
matic focusing of attention on relevant features in the
speech signal. These weighted representations are used
to segment the speech stream into word-size units,
which are then matched to stored representations of
known words, or used to discover and store novel
representations. Failure to select the relevant features
for storage in long-term memory representations or
limitations in the automaticity of feature selection result
in poor segmentation skills, deficient phonological rep-
resentations, and delayed word learning.

Many children with SLI have poor auditory pro-
cessing, including deficiencies in discriminating and
distinguishing the order of rapidly presented tones
and speech sounds (Stark & Heinz, 1996; Frumkin &
Rapin, 1980; Tallal, Stark, Kallman, & Mellits, 1980; Tallal
& Piercy, 1974), in identifying/categorizing speech
sounds (Sussman, 1993), and in identifying brief
speech sounds presented in the context of relatively
longer sounds (Leonard, McGregor, & Allen, 1992).
These findings do not reveal the origins of these deficits
or fully explain their impact on language acquisition.
Furthermore, they do not distinguish between the pos-
sibility that children with SLI fail to store relevant speech
features in long-term representations or have reduced
automaticity in relevant speech feature selection.

The event-related potential (ERP) component mis-
match negativity (MMN) provides a direct test of auto-
maticity because it can be used to examine speech
discrimination under different levels of attention. MMN
is a preattentive index of change detection of a stimulus
feature or pattern (Sussman, Ritter, & Vaughan, 1999;
Näätänen, 1990). Furthermore, the amplitude or latency
of MMN to a speech contrast is affected by the contrast’s
phonemic status in the listener’s native language (Shafer,
Schwartz, & Kurtzberg, 2004; Winkler et al., 1999;
Näätänen et al., 1997). Specifically, the MMN is larger or
earlier for a pair of speech sounds crossing a phonemic
boundary compared with a pair within a phonemic
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category. The relevant cues for a phonemic distinction in
a speaker’s native language are automatically selected at
a preattentive level.

Children with SLI or with broadly defined learning
problems (LP, learning disability or attention-deficit
disorder) have smaller MMNs to speech contrasts. Uwer,
Albrecht, and von Suchodoletz (2002) observed signifi-
cantly smaller MMNs in children with SLI to natural
speech syllables differing in place of articulation (/ba/,
/da/, and /ga/). Similarly, Kraus et al. (1996) observed
smaller MMNs to synthesized [da] versus [ga] speech
sounds in children with LP compared with those with
typical learning skills. These findings support the hy-
pothesis that children with SLI, as well as those with
other learning disabilities, are less automatic in process-
ing speech or that they incorrectly weight speech cues.

Although MMN can be elicited preattentively, atten-
tion can modulate its amplitude, particularly for difficult
discriminations. Specifically, children showed an MMN
to a difficult contrast only with attention (Gomes et al.,
2000). Children with SLI might exhibit a larger MMN to a
difficult speech contrast with attention, and thus, their
selection of relevant speech features may be less auto-
matic than that of their peers.

The purpose of the current investigation was to
examine whether children with SLI have a deficit in
the automaticity of speech processing or in correctly
weighting relevant speech features. Eight children with
SLI (referred by speech–language pathologists) and 11
children with typical language development (TLD) were
compared. The children with SLI scored significantly
lower on the Clinical Evaluation of Language Function
(CELF-3) but not on the Test of Non-Verbal Intelligence
(TONI). Table 1 presents the participants’ language
and nonverbal scores. In the ERP tasks, resynthesized
50-msec vowels ([I] in ‘‘bit’’ and [>] in ‘‘bet’’) were
presented in an oddball paradigm designed to elicit
MMN. The children participated in two MMN tasks. In
the passive task (typically used in MMN studies), they
were asked to ignore the auditory stimuli and watch a
video with the sound turned off. In the attend task, they
were asked to press a button when a target tone was
perceived among the vowel sounds. The participants
performed two behavioral discrimination tasks: one task
(D1 task) using the same oddball design as the ERP
study (except slower stimulus rate of 2/sec) and a
second task (D2 task) in which they had to decide if a
pair of sounds separated by the same intrapair interval
(550 msec) as the ERP study was the same or different.
They were also asked to identify four exemplars of [I]
and [>] (ID task), including the two used in the ERP and
behavioral discrimination tasks. These four exemplars
varied in discrete, equal steps in F1 and F2 formant
frequencies, which are the major cues of vowel percep-
tion. Two of the four stimuli at one end of the contin-
uum were expected to be placed in the /I/ category, and
the remaining two in the />/ category.

For children with typical language, we predicted
robust MMNs to these vowel contrasts whether atten-
tion is directed to or away from the auditory modality,
because they have learned to automatically weight the
relevant features in English vowels for rapid identifica-
tion. For children with SLI, we predicted small or absent
MMNs when attention is directed away from the audi-
tory modality. If these small or absent MMNs are be-
cause of a limitation in the automaticity of attentional
focus on relevant speech cues, then we would expect
to see an increase in MMN amplitude when attention
is focused on the auditory modality. We also predicted
that less automaticity in selection of relevant speech
cues, but robust phonological representations, might
lead to slower behavioral discrimination and categoriza-
tion, but relatively good accuracy. Good accuracy was
predicted in the behavioral tasks because the stimulus
presentation rate was considerably slower on these
tasks than the rates (<1 per 300 msec) shown to lead
to deficits in auditory processing (Rosen, 2003). In
contrast, if the deficit is related to incorrect weighting
of relevant features in the phonological representations,
then attention will have no effect on the MMN, because
it will be directed to the incorrect features. Incorrect
feature weighting would lead to poor speech sound
categorization, but would affect behavioral discrimina-
tion less, because discrimination requires only that a pair
of stimuli differ in at least one feature.

RESULTS

Behavioral Tasks

The children with SLI showed relatively good discrim-
ination on the D1 discrimination task (6/8 of the SLI
and 9/11 of the TLD discriminated >82%, Fisher Exact
Test, p = .4), although they tended to perform more
poorly than the TLD participants (3/8 SLI and 9/11 TLD
discriminated >96%, Fisher Exact Test, p = .07). The
SLI group also performed well on the D2 discrimina-
tion task (6/8 SLI and 8/11 TLD discriminated >90%,
errors <10%, Fisher Exact Test, p = .4). In contrast,
the SLI group displayed significantly worse perform-
ance on the identification task than the children with
TLD (Fisher Exact Test, p = .005). Distinct phoneme
categories are defined as greater than 72% categoriza-
tion of stimulus 1 as [I] and stimulus 4 as [>]. Poor
categorization is defined by chance performance on
one or both stimuli (identification between 33% and
73%). Only three of the eight children with SLI showed
two distinct phoneme categories, whereas all of the
TLD children showed distinct categories. No differen-
ces were observed in reaction time (RT) measures for
any tasks (t < 0.2, p > .84). Table 1 shows the
individual behavioral performance, the mean perform-
ance and standard deviation (SD) for the two groups
(bottom).
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Mismatch Negativity Standard versus Deviant

Figure 1 displays the grand mean ERPs to the standard
and deviant stimulus and subtraction waveforms at the
right central site, C4, for the two groups in the two tasks.
The morphology of the waveforms (large positivity,
P100, peaking around 100 msec, followed by a negativity,
N200–250 between 200 and 250 msec) is representative
of the ERPs at the fronto-central sites (F3, Fz, F4, C3, Cz,
and C4). The P100 and N200–250 peaks are obligatory
components observed in the child’s ERP only at fast
rates of stimulus presentation (under 1 sec; e.g., Shafer,
Morr, Kreuzer, & Kurtzberg, 2000). The ERP to the
deviant stimulus was more negative than that of the
standard beginning around 100 msec and extending
almost to 300 msec in the children with TLD. Greater
negativity of the ERP to the deviant was also observed
for the children with SLI. However, the difference is
particularly small in the attend condition. We performed
four-way mixed analysis of variance (ANOVAs) to deter-
mine whether the standard and deviant (stimulus) dif-
fered across hemisphere (left, midline, and right), time
(seven intervals between 100 and 310 msec), or group
(SLI and TLD) at the frontal (F3, Fz, and F4) and central
(C3, Cz, and C4) sites.

In the attend task at frontal sites, a significant four-way
interaction including group was observed [Stimulus �
Hemisphere � Time � Group: F(12,204) = 3.113, p =
.019, > = .344]. Step-down analyses examining each

group separately revealed a significant main effect of
stimulus for the TLD group [F(1,10) = 11.179, p =
.007]. No significant effects including stimulus were
found for the SLI group [stimulus: F(1,7) = .001, p =
.972; Stimulus � Time: F(6,42) = 2.248, p = .115, > =
.485; Stimulus � Site � Time: F(12,84) = 2.342, p = .101,
> = .254]. At central sites in the attend task, interactions
of Stimulus � Group approached significance [F(1,17) =
3.537, p = .077]. We also found a significant Stimulus �
Hemisphere interaction [F(2,34) = 3.492, p = .054, > =
.803], reflecting that the stimulus difference tended to be
larger over the right compared with left hemisphere sites.

In the passive task, a main effect of stimulus was
found at frontal sites [F(1,17) = 9.611, p = .007] and
central sites [F(1,17) = 7.280, p = .015]. No main group
effects or interactions including group were observed
in this task [frontal: Stimulus � Group, F(1,17) = 3.243,
p = .089; all other effects with group, p > .1].

In summary, a significant difference between the
standard and deviant was found for the TLD, but not
the SLI children in the attend task at frontal sites. In
contrast, in the passive task, the standard and deviant
stimuli differed significantly, but group was not a factor.

Mismatch Negativity Topography

To confirm that significant differences observed be-
tween the standard and deviant ERPs are consistent with

Figure 1. ERPs to the

standard, deviant, and

subtraction waveforms

(deviant � standard) at C4.
The peak negativities of the

MMN and LN components are

identified by arrows. The

amplitude and the latency of
the P100 component are nearly

identical for the children with

TLD and SLI.

Shafer et al. 1171



MMN topography, we performed four-way ANOVAs
using the subtraction waveforms (deviant � standard),
with site (superior and mastoid), hemisphere (left and
right), time (seven intervals), and group (SLI and TLD)
as factors. A significant effect including site would indi-
cate the presence of MMN. We expected clear evidence
of MMN to be a negativity at the superior frontal and
central sites (e.g., F3, F4, C3, C4) and an inversion, or

relative positivity at inferior sites (mastoids; Näätänen,
1990). Figure 2 shows the subtraction waveforms of the
standard and deviant stimulus ERPs at left and right
superior sites (F3, C3, F4, and C4) and at the mastoids
(left and right). Inversion of polarity (i.e., positivity) at
the mastoids is present for the TLD group, but not
for the SLI group. In the attend task, the four-way
ANOVA revealed significant interactions of Site � Group

Figure 2. Grand mean ERP

subtraction waveforms at left
and right scalp sites for the two

groups and two tasks. The

children with TLD show
negativity from 100 to

290 msec (MMN) and 350 to

500 msec (LN) at frontal

(F3 and F4) and central
(C3 and C4) sites with

inversion at the mastoids

(left [LM] and right [RM]). The

children with SLI show a small
negativity peaking around

200 msec; however, no

inversion at the mastoids is
observed. In contrast, they

show a large LN similar to

the children with TLD.
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[F(1,17) = 5.400, p = .003] and Site � Time [F(6,60), =
5.258, p = .010, > = .458]. We also observed an inter-
action of Hemisphere � Time � Group [F(6,102) =
6.689, p = .000, > = .651]. In step-down analyses ex-
amining each group separately, the TLD group showed
a main effect of site [F(1,10) = 12.969, p = .005] and
a significant interaction of Site � Time [F(6,60) = 5.258,
p = .01, > = .387], for which the difference between
sites was greatest for the intervals between 190 and
250 msec (see Figure 2). In contrast, for the SLI group
the ANOVAs revealed a significant interaction of Hemi-
sphere � Time [F(6,42) = 2.809, p = .019, > = .581] and
a Site � Hemisphere interaction that approached sig-
nificance [F(1,7) = 4.105, p = .055]. We performed an
additional step-down analysis (Site � Time) for each
hemisphere separately to clarify these interactions for
the SLI group. In these analyses, we observed a signif-
icant main effect only for time at left hemisphere sites
[time: F(6,42) = 4.087, p = .003]. No other effect ap-
proached significance ( p > .39).

In the passive task, the four-way analysis revealed a
significant interaction of Site � Group [F(1,17) = 9.311,
p = .007] and a main effect of hemisphere [F(1,17) =

4.769, p = .043]. Step-down analyses examining the
groups separately show significant effects only for the
TLD group [site: F(1,10) = 18.710, p = .002; hemi-
sphere: F(1,10) = 9.561, p = .011; Hemisphere � Time:
F(6,60) = 4.170, p = .009, > = .587].

We also examined whether task (attend vs. passive)
had an effect on the MMN in four-way analyses of Task
(attend and passive) � Site (superior and mastoid) �
Time (seven intervals) � Group (SLI and TLD) using the
subtraction waveforms. These analyses did not show
significant effects of task, but did confirm the Site �
Group interactions observed in the previous analyses
[left hemisphere: Site � Group, F(1,17) = 15.724, p =
.001; right hemisphere: Site � Group, F(1,17) = 7.768,
p = .013].

Individual Cases

One question arising from the absence of a significant
MMN in the group data of the SLI children is whether an
MMN can be observed in the individual cases. We had
excellent signal-to-noise ratio because we delivered 400
deviants in each task, allowing us to examine individual

Figure 3. ERPs at left, central,
and right sites for three

children: one child with TLD

(N11) demonstrating a clear

MMN (negativity at F3, C3, Fz,
Cz, F4, and C4; positivity at one

or both mastoids); a second

child from the SLI group (S02)

showing no MMN (negativity at
all sites, including mastoids),

and a third child with SLI (S03)

showing a deviant MMN
(negativity, albeit small, in

most, but not all frontal and

central sites; positivity at one

or both mastoids).
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data. Only two of the eight children with SLI showed a
clear MMN in the passive task and one of eight in the
attend task. In contrast, 7 of the 11 TLD children showed
clear MMNs in the passive task and 9 of 11 in the attend
task. The proportion of children showing clear MMNs
was significantly different for the two groups in the
attend task (Fisher Exact Test, p = .005), but not in
the passive task ( p = .115). Figure 3 shows an example
of a clear MMN (top), absent MMN (middle), and
questionable MMN (bottom) for three children from
the attend task. Table 1 shows the proportion of clear
MMNs for the two groups, and the MMN classification
for the individual children, along with scores on the
TONI and CELF-3, and behavioral identification, discrim-
ination, and RTs. As can be seen in this table, the two
children with SLI showing clear MMNs, surprisingly, do
not show good behavioral identification.

Task Differences

We also tested whether the two groups of children
differed in their allocation of attention during the pas-
sive and attend tasks. Previous research has found a
negative shift of the ERP (called the processing negativ-
ity, PN; Näätänen, 1990) beginning around 100 msec to
an attended compared with unattended auditory stimu-
lus. Four-way mixed ANOVAs of task (attend and pas-
sive) hemisphere (left, midline, and right), time (seven
30-msec time intervals from 101 to 301 msec), and group
(SLI and TLD) examining the ERP to the standard
stimulus were performed. A significant four-way interac-
tion of Task � Hemisphere � Time � Group was found
at the central sites [F(12,204) = 2.504, p = .028 > =
.489], as well as interactions of Task � Time for the
frontal [F(6,102) = 35.240, p = .000, > = .387] and
central sites [F(6,102) = 37.183, p = .000, > = .385]. To
further examine the interaction including group at cen-
tral sites, step-down analyses including task, hemi-
sphere, and group were carried out for each of the
seven time intervals separately. These revealed signifi-
cant main effects of task for all the time intervals, ex-
cept 190–220 msec [F(1,17) > 5.381, p < .03]. Greater
negativity was observed for the attend task compared

with the passive task for the intervals from 101 to
190 msec and greater positivity for intervals from 221
to 310 msec. From 131 to 160 msec, an interaction of
Task � Hemisphere � Group [F(2,34) = 4.208, p = .035
> = .771] and of Task � Group [F(1,17) = 8.173, p =
.011] was also found. Tukey’s post hoc tests revealed
that both groups showed significantly greater negativity
of the ERP in the attend task compared with the passive
task in this interval ( p < .05). However, the ERP at Cz
and C3 in the passive task is also more negative for the
TLD compared with SLI group (Tukey’s HSD, p < .05;
see Figure 4). In the later time interval (280–310 msec),
the TLD, but not SLI group, show greater positivity
of the ERP in the attend compared with passive
task across all central sites (Tukey’s HSD, p < .05; see
Figure 4).

In summary, the ERP data provide evidence that both
groups of children allocated greater attentional re-
sources to processing the speech stimuli in the attend
compared with passive task, as evidenced by the PN
from 101 to 190 msec. The children with TLD also
showed greater negativity than the children with SLI
from 131 to 160 msec in the passive task. This suggests
that they were attending to the speech stimuli, even in
the passive task, but to a lesser degree than in the
attend task.

Late Negativity

It is also important to note that most of the children in
both groups showed greater negativity for the deviant
compared with standard stimulus in a later time frame.
This late negativity (LN) peaked at fronto-central sites
between 300 and 500 msec, as can be observed in
Figure 2. Four-way ANOVAs with stimulus (standard
and deviant) hemisphere (left, midline, and right), time
(six 30-msec intervals from 310 to 490 msec), and group
(SLI and TLD) revealed significant main effects of stim-
ulus [attend frontal: F(1,17) = 6.196, p = .023; attend cen-
tral: F(1,17) = 5.886, p = .027; passive frontal F(1,17) =
11.87, p = .003; passive central: F(1,17) = 21.53, p =
.000]. No effects including group approached signifi-
cance ( p > .1). Thus, both groups had significant

Figure 4. ERPs to the

standard stimulus at C3 (left)

and Cz (right). In general, the
ERP to the standard in the

attend task is more negative

than in the passive task for

both groups a superior frontal
and central sites from 101 to

220 msec. However, it is also

more negative in the passive
task for the TLD compared

with SLI group from 131 to

160 msec at Cz and C3.

1174 Journal of Cognitive Neuroscience Volume 17, Number 7



negativities over frontal and central sites from 310 to
490 msec.

DISCUSSION

Most of the children with SLI, unlike most of those with
TLD, showed no MMN in either the passive or attend
task and most had poor behavioral identification. Both
groups of children showed an LN component in both
ERP tasks and good behavioral discrimination. We had
hypothesized that reduced automaticity of attentional
focus on relevant speech cues would result in a smaller
or absent MMN in the passive task, but an increase in
MMN amplitude in the attend task when attention is
focused on the auditory modality. Limitations in auto-
maticity would also lead to slower, but accurate, behav-
ioral discrimination and identification. Thus, under this
hypothesis, the child has an accurate representation
with accurate weighting of relevant and irrelevant cues,
and the deficit is in the automaticity of applying this
representation in speech processing. Alternatively, we
suggested that inaccurate selection of the relevant cues
(i.e., incorrect weighting) would result in small or absent
MMNs for both the passive and attend tasks, poor
speech sound categorization, but relatively good be-
havioral discrimination. Our results are more consistent
with this latter hypothesis. Below, we discuss our
results in relation to findings from other studies and
present arguments to support the hypothesis that as
least some of the children with SLI in our study have
incorrect weighting of features in their phonological
representations.

Passive Task

A substantial body of evidence suggests that MMN is
an index of automatic, preattentive change detection
(Giard, Fort, Mouchetant-Rostaing, & Pernier, 2000;
Ritter, Deacon, Gomes, Javitt, & Vaughan, 1995;
Näätänen, 1990). The amplitude and peak latency of the
MMN also reflect the difficulty of the discrimination,
with easier discriminations leading to larger and earlier
MMNs. The absence of an MMN in the passive task for
the children with SLI suggests that the discrimination
of the /I/ versus />/ contrast was more difficult for child-
ren with SLI compared with those with TLD, but does
not reveal whether it is because of less automaticity in
processing these stimuli or to a deficit in selecting
relevant speech features. Our finding is similar to the
results of Uwer et al. (2002), who observed a smaller
negativity to a deviant consonant contrast in children
with SLI compared with TLD. However, they examined
a broad time interval that consisted primarily of what
we are calling the LN response (320–650 msec for /da/
vs. /ga/ and 210–700 msec for /da/ vs. /ba/). A MMN-like
negativity is seen in an earlier interval between 100 and
350 msec in Figure 1 of Uwer et al., but they did not test

its significance. It is also not possible to conclude that
the negativity (whether MMN or LN) in their study is
an index of place of articulation discrimination (e.g.,
bilabial [b] vs. alveolar [d]) because the naturally pro-
duced syllables used in their study probably differed on
other phonetic dimensions. Even so, their findings and
ours suggest deficient speech processing. The finding
(Bradlow et al., 1999; Kraus et al., 1996) that children
with LPs show smaller MMNs to speech contrasting in
brief consonant transitions (/da/ and /ga/) support the
claim that deficient processing of speech is related to a
wide range of LPs. However, the cause of this deficiency
might be different for these populations.

In sum, the results of the ERP passive task reveal that
children with SLI are deficient in processing speech.
However, data from the ERP attend task, behavioral
discrimination, and behavioral identification are neces-
sary to choose between the two alternative hypotheses
proposed above.

Automaticity in Feature Selection

We hypothesized that failure in selecting relevant cues
automatically during speech processing would result in a
small or absent MMN without attention directed to the
auditory stimuli and a larger, clearer MMN with attention
directed to the auditory modality. We also suggested
that the limitations in processing automaticity might
be seen as slower response times, but we did not expect
it to lead to poor behavioral discrimination or identifi-
cation at the slow rates of presentation (2 sec) used in
this study.

The children with SLI in our study showed accurate
discrimination, but poor identification and no difference
in RT. Attention to the auditory modality also failed
to lead to improved MMN. This pattern of results is
not consistent with the hypothesis that speech per-
ception deficits in children with SLI are due to limited
processing automaticity, at least as the primary explana-
tion. We were fairly certain that the children with SLI
and TLD were allocating attentional resources to pro-
cessing the speech stimuli in the attend task, because
they showed a PN, which is elicited when attention is
directed to a stimulus (Näätänen, 1990). However, it will
be necessary to demonstrate that attention to speech
features (by having a speech sound as a target) does not
lead to a larger MMN in children with SLI before
conclusively rejecting this as a contributing factor. It is
possible that our fixed order (passive and attend)
worked against finding a significant effect of attention
on the MMN, because McGee et al. (2001) found that the
amplitude of MMN declines over the time course of a
long session. However, the PN in the attend condition
does not support this possibility. The larger PN for the
children with TLD compared with those with SLI sug-
gests that this group is better able to divide their
attention and, thus, allocate some attentional resources
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to the speech stimuli even when instructed to ignore
them.

Incorrect Feature Weighting

As proposed above, a deficit in speech perception could
be the result of incorrectly weighted phonological rep-
resentations in memory. We hypothesized that this
deficit would lead to small or absent MMNs in both
the passive and attend tasks and poor behavioral iden-
tification. Behavioral discrimination would be relatively
accurate because it only requires recognition of a single
featural difference (not necessarily the category-critical
feature) between stimuli. Our SLI group showed poor
behavioral identification but relatively good behavioral
discrimination, consistent with Sussman (1993). She
found that children with SLI had accurate discrimina-
tion, but a different categorical boundary and a larger
area of uncertainty for a place feature distinction (/ba/
vs. /da/) compared with TLD peers. We also found that
attention to the auditory modality did not lead to a
larger MMN in the SLI group. This pattern of findings
appears to be consistent with incorrect weighting of
relevant features. However, as will be discussed in the
next section, only three of the eight individual cases
show this predicted pattern for all ERP and behavioral
tasks.

Incorrectly weighted representations would not sup-
port the trace-comparison process indexed by MMN.
This explanation is consistent with investigations show-
ing that the amplitude or latency of MMN is affected
by experience with a language (Shafer, Schwartz, &
Kurtzberg, 2004; Winkler et al., 1999; Näätänen et al.,
1997). The weighted long-term memory representations
clearly allow fast, automatic discrimination of speech
sounds in adults, as indexed by MMN. In a current study,
we are using the same vowel stimuli from this experi-
ment to examine speech processing in early versus late
learners of English with Spanish as a first language. We
find that late learners of English, even if they appear to
be proficient, show inaccurate identification and no
MMN, but accurate behavioral discrimination. The
monolingual and early bilinguals show MMNs and good
behavioral discrimination and identification. Our SLI
group showed a similar pattern of results to these late
learners of English, suggesting they incorrectly weight
the relevant features for categorization of these vowels.

The MMN is believed to index acoustic feature dis-
crimination, but studies showing that native-language
phonological categories affect the MMN suggest that the
process indexed by this measure is linked to long-term
phonological representations. In other words, accurate
phonological representations lead to rapid selection of
relevant cues for the comparison process. However,
inaccurate representations do not preclude a preatten-
tive trace comparison process, as demonstrated by
studies using nonspeech stimuli. Thus, we expected, at

least for the attend task, to see a neurophysiological
response indicating discrimination, because children
with SLI showed good behavioral discrimination. We
did, in fact, see such a response, which we are calling
the LN, in both the passive and attend tasks. Several
other investigations using complex stimuli have ob-
served a similar late discriminative response (e.g.,
Cheour, Korpilahti, Martynova, & Lang, 2001; Korpilahti,
Krause, Holopainen, & Lang, 2001), and the significant
negativity in the children with SLI and TLD in the study
of Uwer et al. (2002) is at the later time interval of the
LN. This LN may reflect a discrimination process that is
independent of stored phonological representations and
takes longer because evaluation of relevant features is
not given priority over irrelevant features. In fact, the
MMN and LN may reflect the same trace-comparison
process, but the earlier negativity seen for the TLD
group ref lects the advantage of robust, accurately
weighted phonological representations.

Individual Differences

The group data support the hypothesis that children
with SLI have inaccurately weighted phonological rep-
resentations. They also reveal that the absence of MMN
and poor behavioral identification together serve as a
sensitive marker for SLI. Every child from the TLD group
showed good identification of the vowel stimuli and
showed a robust MMN in at least one of the tasks,1

which was not true for any of the children with SLI.
However, individual differences across the children with
SLI reveal a more complex picture. Only three of the
eight children with SLI showed the pattern predicted to
support incorrect weighting of relevant features, that is,
poor behavioral identification and questionable MMNs.
Of the remaining five, three showed good behavioral
identification, but questionable MMNs. The accurate
identification suggests that these children have selected
and stored the correct relevant cues (i.e., have accurate
weighting) in their long-term memory representations.
The poor MMNs suggest that these three children are
less automatic in using these representations. The larger
MMNs we had predicted in the attend task may not have
occurred because their attention was directed to detect-
ing tones rather than identifying speech sounds. Alter-
natively, the processing of accurately weighted cues may
have been slower (i.e., less automatic) for these children
and was reflected in the later negativity of the LN. This
explanation is supported by the slow RTs in the identi-
fication task for two of these three children.

Two other children with SLI showed a robust MMN
(one of them in both tasks), but had poor identification
and poor sensitivity on the D2 discrimination task. S04,
who was the youngest child in the study, showed a
robust MMN in the passive task, but not in the attend
task. His poor performance on the behavioral tasks may
have been partly due to age, but he has also shown
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poor performance on a phonological task at a later age
(9 years, 8 months; Shafer, Schwartz, & Kessler, 2004).
The other child (S05) with robust MMNs for both tasks
exhibited very fast RTs and may not have taken the
necessary time to evaluate the stimuli. This child was
referred to us as SLI, but her relatively high language test
scores and performance in this study suggest that the
causal factors leading to her language deficits may be
different from the other children with SLI.

These findings indicate that MMN and performance
on the behavioral tasks do not reflect identical process-
es. This should not be surprising, because MMN indexes
an early stage of processing, whereas behavioral dis-
crimination and identification represent endpoints of
processing. A number of processes and factors that
support discrimination and identification may intervene
between the earliest processing stages and these end-
point judgments.

The individual differences in the ERP and behavioral
measures may have several different sources. However, a
larger number of participants would be needed to
explore these factors. It also may be particularly impor-
tant to examine these individual differences in infants
and toddlers because the core speech perception defi-
ciencies that may be precursors to SLI may resolve or
take different forms at later ages.

Poor Auditory Processing

One major debate regarding SLI is whether the cause of
this disorder is a general auditory processing deficit or a
deficit specific to speech or language (Bishop & Mac-
Arthur, 2005; Benasich & Tallal, 2002; Leonard, 1998;
Tallal, Miller, & Fitch, 1993). Our study was not designed
to test this question, because we did not examine
processing of nonspeech auditory stimuli. Our findings,
thus, do not rule out the possibility that poor auditory
processing leads to speech perception and language
deficits in some children. A deficit in auditory processing
could affect the construction of long-term memory
representations and, consequently, word learning, dur-
ing development. However, poor auditory processing
would not necessarily preclude developing adequate
phonological representations or be the only causal
factor in leading to deficits in phonological representa-
tions (see the work of Bishop, Carolyn, Deeks, & Bishop,
1999). The issue of whether children have a general
auditory versus a speech specific deficit is of secondary
interest. The more interesting question is how a deficit
in auditory or speech processing might lead to the
language LPs observed in children with SLI. A failure to
correctly weight relevant features for identifying phono-
logical categories or less automaticity can explain the
delayed language learning and persistent phonological
problems seen in many children with SLI. From a clinical
perspective, under this view, intervention would be best
directed toward highlighting the relevant features for

rapid identification of the distinctive phonemes of the
target language.

Conclusion

Our results suggest that many children with SLI have
deficient speech perception abilities reflected in the
absence of MMN and in poor behavioral identification.
However, they also suggest that the origins of these
speech perception deficiencies vary individually. Some
have incorrectly weighted phonological representations
in long-term memory as indicated by their poor catego-
rization scores and absent MMNs, whereas others have
less automatic or slowed processing, as reflected by
good behavioral identification and robust LNs, but slow
RTs and questionable MMNs. Accurate behavioral dis-
crimination responses were seen in children with SLI
despite questionable MMNs. This dissociation highlights
the fact that behavioral responses made at the end of
processes may involve other intermediate and less au-
tomatic processes. Our study illustrates that the use of
neurophysiological measures in conjunction with be-
havioral measures can provide important insights into
the nature of SLI.

METHODS

Subjects

We originally tested 18 children recruited as controls
and 10 with language impairment. Two children were
excluded from the SLI group. One had low nonverbal
intelligence (<70 on the TONI) and one had a mild-to-
moderate fluctuating hearing loss. We excluded seven
children from the TLD group for the following reasons:
five had TONI scores of >120, one had a TONI score of
<70, and one had no language or nonverbal scores
because she did not return for standardized testing.
The children with SLI had no known neurological,
sensory, or cognitive deficits other than language im-
pairment, and were diagnosed by certified Speech Lan-
guage Pathologists. All children received either the
TOLD or CELF-3 to test their expressive and receptive
language skills and the TONI to evaluate their nonverbal
abilities. SLI children performed poorly on at least two
subtests of the TOLD or CELF-3 (�7, standardized mean
score = 10) and scored significantly lower on the
language tests (one-tailed t > 4.0, p < .0001), but not
on the TONI than the control group (one-tailed t = 1.2,
p = .2; see Table 1).

Stimuli

The stimuli were created by resynthesizing and editing a
naturally produced exemplar using ASL/CSL software to
produce a series of vowels perceived as either [I] in
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‘‘bit’’ or [>] in ‘‘bet.’’ Formants F3 and F4 and the
fundamental frequency F0 were identical for all stimuli,
peaking at approximately 2714, 3175, and 190 Hz, re-
spectively. The stimuli were edited to 50-msec in dura-
tion and had a rise and fall time of 5 msec. The four
stimuli selected for this study had the following F1 and
F2 formant frequencies: stimulus 1: F1 = 500 Hz, F2 =
2160 Hz; stimulus 2: F1 = 550 Hz, F2 = 2100 Hz, stim-
ulus 3: F1 = 600 Hz, F2 = 2040 Hz; stimulus 4: F1 =
650 Hz, F2 = 1980 Hz. Stimuli 1 and 2 were consistently
identified as the vowel [I] and stimuli 3 and 4 as the
vowel [>] by a group of nine adults. The intensity of the
stimuli was set at 86.5 dB SPL.

Procedure

Behavioral

The children participated in three behavioral discrimi-
nation tasks (3-deviant [3D], 1-deviant [D1], and same–
different judgment [D2]) followed by a behavioral iden-
tification task. In this article, we report the behavioral
results of the Identification (ID), D1, and D2 tasks.
(Results for D3 were similar to the D1 task.) In the
identification task, each of the four vowel stimuli was
presented 15 times, for a total of 60 stimuli. Participants
pressed one button if they heard the vowel /I/ and a
second button if they heard the vowel />/. In the D1 task,
stimulus 4 occurred on 79% of the trials, and stimulus 1
on 21% of the trials (with a total of 30 deviant trials).
Participants pressed a button for any stimulus that dif-
fered from the standard frequent stimulus />/. The
stimuli were presented at a rate of 1 per 2 sec in the
ID and D1 behavioral tasks. In the D2 (same � different)
task pairs of stimuli were presented with an interstimuli
interval of 550 msec (rate = 1 per 600 msec). The
interpair interval was 2 sec. Practice trials were given
for all tasks. RTs were compared using t tests, and the
accuracy of behavioral data was compared using the
nonparametric Fisher Exact Test (Siegel, Castellan, &
Castellan, 1990).

Event-related Potential

ERP indexes of discrimination were examined in two
tasks (passive and attend). In both tasks, stimulus 4
occurred on 79% of the trials and stimulus 1 on 21%
of the trials (with a total of 400 deviant trials). Thirteen
50-msec tones were pseudorandomly embedded in each
block of 500 speech stimuli to serve as targets in the
attend condition. The stimuli were presented at a rate of
1 per 600 msec. In the passive task (most widely used in
previous MMN investigations), the participant was in-
structed to ignore the stimuli and watch a video with the
sound turned off. In the attend task the participant was
instructed to press a button when they heard a target
tone in the stream of auditory stimuli. The children were

rewarded with an M&M candy for correct responses. A
familiarization test was provided before the attend con-
dition to ensure that the child understood the task. The
passive condition always preceded the attend condition.

Recording System and Analysis

The electroencephalogram was sampled at 512 Hz from
31 scalp sites, referenced to the nose at a bandwidth of
0.05–100 Hz. An electrode placed 1 cm below the eye
and referenced to Fp1 was used to monitor eye move-
ments. The epochs of the electroencephalogram time-
locked to the onset of stimuli were averaged and
digitally low-pass-filtered at 30 Hz. Epochs with artifact
greater than 100 AV were rejected from the average. The
mean of the 50-msec prestimulus activity was set to 0 AV.

ANOVAs were performed using the mean amplitude
of seven consecutive 30-msec time periods from 101 to
310 msec to test for significant negativity in the MMN
time range, and using the mean amplitude of six 30-msec
intervals from 310 to 490 to test for the LN. To examine
whether the ERPs to the standard and deviant stimuli
differed significantly, separate ANOVAs were performed
for frontal sites (Fz, F3, and F4) and central sites (Cz, C3,
and C4) with stimulus (standard and deviant), hemi-
sphere (left, central, and right), and time (seven levels
for MMN and six levels for LN) as within-subject factors,
and group (TLD, SLI) as the between-subject factor.
Step-down ANOVAs were performed to follow-up signif-
icant interactions.

To examine whether a significant difference between
the standard and deviant could be considered an MMN,
four-way ANOVAs including site (superior and mastoid),
hemisphere (left and right), time (seven levels), and
group (TLD and SLI) as factors were performed using
subtraction waveforms. Subtraction waveforms were
derived by subtracting the ERP to the standard from
that of the deviant. The superior site measures were
computed as the average of left frontal and central (F3
and C3) and right frontal and central (F4 and C4) sites. A
four-way ANOVA including task (attend and passive), site
(superior and mastoid), time (seven levels), and group
as factors was performed on the subtraction waveforms
of the left and right hemispheres, separately, to examine
effects of attention on the MMN.

The subtraction waveforms were visually inspected
and classified as clear, deviant or absent MMN. A clear
MMN was defined as the presence of negativity at fronto-
central sites (F3, Fz, F4, C3, Cz, and C4) and relative
positivity at the mastoids (left and right) between 100
and 300 msec in the subtraction waveform. A deviant
MMN was defined as the presence of negativity at most,
but not all of the fronto-central sites (F3, Fz, F4, C3, Cz,
and C4) and relative positivity at the mastoids (left and
right) between 200 and 300 msec. No MMN was defined
as an absence of negativity at frontal central sites or
negativity at both fronto-central and at mastoid sites.
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Group differences in the proportions of clear versus
deviant or absent MMNs were examined using the
nonparametric Fisher Exact Test.

To examine the PN, four-way mixed ANOVAs of Task
(attend and passive) � Hemisphere (Left, Midline, and
Right) � Time � Group were performed for the ERP to
the standard stimulus at frontal (F3, Fz, and F4), and
central sites (C3, Cz, and C4) on the mean amplitudes of
seven 30-msec intervals between 101 and 310 msec. All
analyses were performed for the two tasks (attend and
passive), separately, except where task is listed as a
factor. Tukey’s HSD was used for pairwise compari-
sons. The Greenhouse–Geisser (>) was calculated for
all ANOVA analyses having greater than two levels.
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Note

1. This observation is also true for the six TLD children
excluded from these analyses because of high or absent scores
on the TONI (see Methods section).
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